1
|
Tu J, Tong H, Wang P, Wang D, Yang Y, Meng X, Hu L, Wang H, Chen Q. Octahedral/Tetrahedral Vacancies in Fe 3 O 4 as K-Storage Sites: A Case of Anti-Spinel Structure Material Serving as High-Performance Anodes for PIBs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301606. [PMID: 37086133 DOI: 10.1002/smll.202301606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/25/2023] [Indexed: 05/03/2023]
Abstract
Potassium-ion batteries (PIBs) have attracted more and more attention as viable alternatives to lithium-ion batteries (LIBs) due to the deficiency and uneven distribution of lithium resources. However, it is shown that potassium storage in some compounds through reaction or intercalation mechanisms cannot effectively improve the capacity and stability of anodes for PIBs. The unique anti-spinel structure of magnetite (Fe3 O4 ) is densely packed with thirty-two O atoms to form a face-centered cubic (fcc) unit cell with tetrahedral/octahedral vacancies in the O-closed packing structure, which can serve as K+ storage sites according to the density functional theory (DFT) calculation results. In this work, carbon-coated Fe3 O4 @C nanoparticles are prepared as high-performance anodes for PIBs, which exhibit high reversible capacity (638 mAh g-1 at 0.05 A g-1 ) and hyper stable cycling performance at ultrahigh current density (150 mAh g-1 after 9000 cycles at 10 A g-1 ). In situ XRD, ex-situ Fe K-edge XAFS, and DFT calculations confirm the storage of K+ in tetrahedral/octahedral vacancies.
Collapse
Affiliation(s)
- Jinwei Tu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science & Engineering University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Huigang Tong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science & Engineering University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Peichen Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science & Engineering University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Dongdong Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science & Engineering University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yang Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science & Engineering University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiangfu Meng
- The High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Lin Hu
- The High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Hui Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science & Engineering University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qianwang Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science & Engineering University of Science and Technology of China, Hefei, 230026, P. R. China
- The High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| |
Collapse
|
2
|
Xu J, Dou S, Wang Y, Yuan Q, Deng Y, Chen Y. Development of Metal and Metal-Based Composites Anode Materials for Potassium-Ion Batteries. ACTA ACUST UNITED AC 2021. [DOI: 10.1007/s12209-021-00281-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Park J, Koo K, Noh N, Chang JH, Cheong JY, Dae KS, Park JS, Ji S, Kim ID, Yuk JM. Graphene Liquid Cell Electron Microscopy: Progress, Applications, and Perspectives. ACS NANO 2021; 15:288-308. [PMID: 33395264 DOI: 10.1021/acsnano.0c10229] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Graphene liquid cell electron microscopy (GLC-EM), a cutting-edge liquid-phase EM technique, has become a powerful tool to directly visualize wet biological samples and the microstructural dynamics of nanomaterials in liquids. GLC uses graphene sheets with a one carbon atom thickness as a viewing window and a liquid container. As a result, GLC facilitates atomic-scale observation while sustaining intact liquids inside an ultra-high-vacuum transmission electron microscopy chamber. Using GLC-EM, diverse scientific results have been recently reported in the material, colloidal, environmental, and life science fields. Here, the developments of GLC fabrications, such as first-generation veil-type cells, second-generation well-type cells, and third-generation liquid-flowing cells, are summarized. Moreover, recent GLC-EM studies on colloidal nanoparticles, battery electrodes, mineralization, and wet biological samples are also highlighted. Finally, the considerations and future opportunities associated with GLC-EM are discussed to offer broad understanding and insight on atomic-resolution imaging in liquid-state dynamics.
Collapse
Affiliation(s)
- Jungjae Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kunmo Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Namgyu Noh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Joon Ha Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jun Young Cheong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyun Seong Dae
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji Su Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sanghyeon Ji
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jong Min Yuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Kim C, Cho HJ, Yoon KR, Cheong JY, Cho SH, Jung JW, Song SW, Kim ID. Synergistic Interactions of Different Electroactive Components for Superior Lithium Storage Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:587-596. [PMID: 33378179 DOI: 10.1021/acsami.0c18438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The fusion of different electroactive components of lithium-ion batteries (LIBs) sometimes brings exceptional electrochemical properties. We herein report the reduced graphene-oxide (rGO)-coated Zn2SnO4z@NiO nanofibers (ZSO@NiO@G NFs) formed by the synergistic fusion of three different electroactive components including ZnO, SnO2, and NiO that exhibit exceptional electrochemical properties as negative electrodes for LIBs. The simple synthetic route comprised of electrospinning and calcination processes enables to form porous one-dimensional (1D) structured ZSO, which is the atomic combination between ZnO and SnO2, exhibiting effective strain relaxation during battery operation. Furthermore, the catalytic effect of Ni converted from the surface-functional NiO nanolayer on ZSO significantly contributes to improved reversible capacity. Finally, rGO sheets formed on the surface of ZSO@NiO NFs enable to construct electrically conductive path as well as a stable SEI layer, resulting in excellent electrochemical performances. Especially, exceptional cycle lifespan of more than 1600 cycles with a high capacity (1060 mAh g-1) at a high current density (1000 mA g-1), which is the best result among mixed transition metal oxide (stannates, molybdates, cobaltates, ferrites, and manganates) negative electrodes for LIBs, is demonstrated.
Collapse
Affiliation(s)
- Chanhoon Kim
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, Republic of Korea
| | - Hee-Jin Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ki Ro Yoon
- Advanced Textile R&D Department, Korea Institute of Industrial Technology (KITECH), 143, Hanggaul-ro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Jun Young Cheong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Su-Ho Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ji-Won Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seok Won Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Huang Y, Fang Y, Lu XF, Luan D, Lou XW(D. Co
3
O
4
Hollow Nanoparticles Embedded in Mesoporous Walls of Carbon Nanoboxes for Efficient Lithium Storage. Angew Chem Int Ed Engl 2020; 59:19914-19918. [DOI: 10.1002/anie.202008987] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Yi Huang
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Yongjin Fang
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Xue Feng Lu
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Deyan Luan
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Xiong Wen (David) Lou
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| |
Collapse
|
6
|
Huang Y, Fang Y, Lu XF, Luan D, Lou XW(D. Co
3
O
4
Hollow Nanoparticles Embedded in Mesoporous Walls of Carbon Nanoboxes for Efficient Lithium Storage. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yi Huang
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Yongjin Fang
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Xue Feng Lu
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Deyan Luan
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Xiong Wen (David) Lou
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| |
Collapse
|
7
|
Cheng Y, Huang J, Cao L, Xie H, Yu F, Xi S, Shi B, Li J. Rational Design of Core‐Shell Structured C@SnO
2
@CNTs Composite with Enhanced Lithium Storage Performance. ChemElectroChem 2020. [DOI: 10.1002/celc.201901732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yayi Cheng
- Xi'an Aeronautical University 259 West Second Ring Xi'an 710077 China
- School of Materials Science & Engineering, Xi'an Key Laboratory of Green Processing for Ceramic materials, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsShaanxi University of Science and Technology Xi'an 710021 China
| | - Jianfeng Huang
- School of Materials Science & Engineering, Xi'an Key Laboratory of Green Processing for Ceramic materials, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsShaanxi University of Science and Technology Xi'an 710021 China
| | - Liyun Cao
- School of Materials Science & Engineering, Xi'an Key Laboratory of Green Processing for Ceramic materials, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsShaanxi University of Science and Technology Xi'an 710021 China
| | - Hui Xie
- Xi'an Aeronautical University 259 West Second Ring Xi'an 710077 China
| | - Fangli Yu
- Xi'an Aeronautical University 259 West Second Ring Xi'an 710077 China
| | - Shaohua Xi
- Xi'an Aeronautical University 259 West Second Ring Xi'an 710077 China
| | - Bingyao Shi
- Xi'an Aeronautical University 259 West Second Ring Xi'an 710077 China
| | - Jiayin Li
- School of Materials Science & Engineering, Xi'an Key Laboratory of Green Processing for Ceramic materials, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsShaanxi University of Science and Technology Xi'an 710021 China
| |
Collapse
|
8
|
Chang JH, Cheong JY, Kim SJ, Shim YS, Park JY, Seo HK, Dae KS, Lee CW, Kim ID, Yuk JM. Graphene Liquid Cell Electron Microscopy of Initial Lithiation in Co 3O 4 Nanoparticles. ACS OMEGA 2019; 4:6784-6788. [PMID: 31459800 PMCID: PMC6648773 DOI: 10.1021/acsomega.9b00185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/03/2019] [Indexed: 06/10/2023]
Abstract
As it governs the overall performance of lithium-ion batteries, understanding the reaction pathway of lithiation is highly desired. For Co3O4 nanoparticles as anode material, here, we report an initial conversion reaction pathway during lithiation. Using graphene liquid cell electron microscopy (GLC-EM), we reveal a CoO phase of the initial conversion product as well as morphological dynamics during Co3O4 lithiation. In accordance with the in situ TEM observation, we confirmed that the Co3O4 to CoO conversion is a thermodynamically favorable process by calculating the theoretical average voltage based on density functional theory. Our observation will provide a useful insight into the oxide electrode that undergoes conversion reaction.
Collapse
Affiliation(s)
- Joon Ha Chang
- Department of Materials
Science and Engineering, Korea Advanced
Institute of Science and Technology, 335 Science Road, Daejeon 34141, Republic of Korea
| | - Jun Young Cheong
- Department of Materials
Science and Engineering, Korea Advanced
Institute of Science and Technology, 335 Science Road, Daejeon 34141, Republic of Korea
| | - Sung Joo Kim
- Department of Materials
Science and Engineering, Korea Advanced
Institute of Science and Technology, 335 Science Road, Daejeon 34141, Republic of Korea
| | - Yoon-Su Shim
- Department of Materials
Science and Engineering, Korea Advanced
Institute of Science and Technology, 335 Science Road, Daejeon 34141, Republic of Korea
| | - Jae Yeol Park
- Department of Materials
Science and Engineering, Korea Advanced
Institute of Science and Technology, 335 Science Road, Daejeon 34141, Republic of Korea
| | - Hyeon Kook Seo
- Department of Materials
Science and Engineering, Korea Advanced
Institute of Science and Technology, 335 Science Road, Daejeon 34141, Republic of Korea
| | - Kyun Seong Dae
- Department of Materials
Science and Engineering, Korea Advanced
Institute of Science and Technology, 335 Science Road, Daejeon 34141, Republic of Korea
| | - Chan-Woo Lee
- Platform Technology Laboratory, Korea Institute
of Energy Research, 152 Gajeong-Ro, Yuseong-Gu, Daejeon 34129, Republic of Korea
| | - Il-Doo Kim
- Department of Materials
Science and Engineering, Korea Advanced
Institute of Science and Technology, 335 Science Road, Daejeon 34141, Republic of Korea
| | - Jong Min Yuk
- Department of Materials
Science and Engineering, Korea Advanced
Institute of Science and Technology, 335 Science Road, Daejeon 34141, Republic of Korea
| |
Collapse
|