1
|
Pradhan K, Singh U, Shukla S, Duttagupta SP, Saxena S. Zinc ferrite nanoparticles as electrode material for supercapacitors. NANOTECHNOLOGY 2025; 36:155401. [PMID: 39919320 DOI: 10.1088/1361-6528/adb3ac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/07/2025] [Indexed: 02/09/2025]
Abstract
In the realm of sustainable and renewable nanotechnology, supercapacitors have appeared as the dominant solution for energy conversion and storage. Ferrites have been widely explored in magnetic, electronic and microwave devices, and are now being explored for applications in energy storage devices due to the possibility of achieving fast and reversible surface Faradic reactions. From this perspective, a simple and inexpensive chemical co-precipitation method was used to synthesize ultrasmall ZnFe2O4nanoparticles (NPs). As an electrode material the ZnFe2O4NPs show a gravimetric capacitance of 186.6 F g-1at a current density of 1 A g-1in 1 M H2SO4. Furthermore, the ZnFe2O4NP-based electrode shows exceptional capacitive retention of 98% over 1000 cycles at a current density of 3 A g-1. An asymmetric ZnFe2O4NP//NiO NP device was fabricated, which achieved a power density of 302.3 W kg-1at a current density of 1.5 A g-1and an energy density of 14.85 W h kg-1. After 1500 cycles, the device demonstrated capacity retention of 99.4% at 1.5 A g-1in long-term stability testing with 100% efficiency. Our study suggests that ZnFe2O4NPs are promising as a material for future energy storage applications.
Collapse
Affiliation(s)
- Kousik Pradhan
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, MH 400076, India
| | - Umisha Singh
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, MH 400076, India
| | - Shobha Shukla
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, MH 400076, India
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH 400076, India
| | - Siddhartha P Duttagupta
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, MH 400076, India
| | - Sumit Saxena
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, MH 400076, India
- Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH 400076, India
| |
Collapse
|
2
|
Bhol P, Jagdale PB, Jadhav AH, Saxena M, Samal AK. All-Solid-State Supercapacitors Based on Cobalt Magnesium Telluride Microtubes Decorated with Tellurium Nanotubes. CHEMSUSCHEM 2024; 17:e202301009. [PMID: 38084066 DOI: 10.1002/cssc.202301009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/15/2023] [Indexed: 01/28/2024]
Abstract
Magnesium (Mg) has received very little exploration on its importance in the realm of battery-type energy storage technologies. They are abundantly present in seawater, and if successfully extracted and utilized in energy storage systems, it could lead to the long-term advancement of human civilization. Here, we fabricated an all-solid-state supercapacitor (ASSSC) using tellurium nanotubes decorated cobalt magnesium telluride microtubes (Te NTs@CoMgTe MTs) clad on nickel foam (NF). Owing to the unique mixed phase hierarchical structure, Te NTs@CoMgTe MTs showcases some advancement in energy storage performance. When tested in a three-electrode system, multiphasic hybrid of elemental Te and metal tellurides, Te NTs@CoMgTe MTs outperforms the monometallic telluride owing to the strong synergistic interaction effect triggered from conductive three components and delivers a long-life span performance up to 15,000 cycles. The fabricated Te NT@CoMgTe MT//AC solid-state device exhibits a maximum areal capacity of 59.2 μAh cm-2 (56.3 mAh g-1) at a current density of 6 mA cm-2 with a maximum energy density of 42.2 Wh kg-1 (46.5 μWh cm-2) at a power density of 6857.1 W kg-1 (7574.6 μW cm-2). The performance of the device is rigid even at different bending angles (0 to 180°) which validates the extensibility of the process for future applications.
Collapse
Affiliation(s)
- Prangya Bhol
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Ramanagara, Bangalore, 562112, India
| | - Pallavi B Jagdale
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Ramanagara, Bangalore, 562112, India
| | - Arvind H Jadhav
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Ramanagara, Bangalore, 562112, India
| | - Manav Saxena
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Ramanagara, Bangalore, 562112, India
| | - Akshaya K Samal
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Ramanagara, Bangalore, 562112, India
| |
Collapse
|
3
|
Abbas Q, Mateen A, Khan AJ, Eldesoky GE, Idrees A, Ahmad A, Eldin ET, Das HT, Sajjad M, Javed MS. Binder-Free Zinc-Iron Oxide as a High-Performance Negative Electrode Material for Pseudocapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3154. [PMID: 36144942 PMCID: PMC9504540 DOI: 10.3390/nano12183154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
The interaction between cathode and anode materials is critical for developing a high-performance asymmetric supercapacitor (SC). Significant advances have been made for cathode materials, while the anode is comparatively less explored for SC applications. Herein, we proposed a high-performance binder-free anode material composed of two-dimensional ZnFe2O4 nanoflakes supported on carbon cloth (ZFO-NF@CC). The electrochemical performance of ZFO-NF@CC as an anode material for supercapacitor application was examined in a KOH solution via a three-electrode configuration. The ZFO-NF@CC electrode demonstrated a specific capacitance of 509 F g-1 at 1.5 A g-1 and was retained 94.2% after 10,000 GCD cycles. The ZFO-NF@CC electrode showed exceptional charge storage properties by attaining high pseudocapacitive-type storage. Furthermore, an asymmetric SC device was fabricated using ZFO-NF@CC as an anode and activated carbon on CC (AC@CC) as a cathode with a KOH-based aqueous electrolyte (ZFO-NF@CC||AC@CC). The ZFO-NF@CC||AC@CC yielded a high specific capacitance of 122.2 F g-1 at a current density of 2 A g-1, a high energy density of 55.044 Wh kg-1 at a power density of 1801.44 W kg-1, with a remarkable retention rate of 96.5% even after 4000 cycles was attained. Thus, our results showed that the enhanced electrochemical performance of ZFO-NF@CC used as an anode in high-performance SC applications can open new research directions for replacing carbon-based anode materials.
Collapse
Affiliation(s)
- Qasim Abbas
- Department of Intelligent Manufacturing, Yibin University, Yibin 644000, China
| | - Abdul Mateen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, Department of Physics, Beijing Normal University, Beijing 100084, China
| | - Abdul Jabbar Khan
- College of Chemical Engineering, Huanggang Normal University, Huanggang 438000, China
| | - Gaber E. Eldesoky
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asim Idrees
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Awais Ahmad
- Departamento de Quimica Organica, Universidad de Cordoba, E14014 Cordoba, Spain
| | - Elsayed Tag Eldin
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11835, Egypt
| | - Himadri Tanaya Das
- Centre of Excellence for Advance Materials and Applications, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Muhammad Sajjad
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Controllable synthesis of nickel doped hierarchical zinc MOF with tunable morphologies for enhanced supercapability. J Colloid Interface Sci 2022; 618:375-385. [DOI: 10.1016/j.jcis.2022.03.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 12/15/2022]
|
5
|
Dong S, Ohta R, Kosaka S, Iseki T. Pitch‐black surface stemming from self‐standing ZnFe
2
O
4
nanowalls. NANO SELECT 2022. [DOI: 10.1002/nano.202100351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Shuxin Dong
- Toyota Central R&D Labs., Inc. 41‐1, Yokomichi Nagakute Aichi 480‐1192 Japan
| | - Riichiro Ohta
- Toyota Central R&D Labs., Inc. 41‐1, Yokomichi Nagakute Aichi 480‐1192 Japan
| | - Satoru Kosaka
- Toyota Central R&D Labs., Inc. 41‐1, Yokomichi Nagakute Aichi 480‐1192 Japan
| | - Takashi Iseki
- Toyota Central R&D Labs., Inc. 41‐1, Yokomichi Nagakute Aichi 480‐1192 Japan
| |
Collapse
|
6
|
Janani B, Syed A, Sruthi L, Sivaranjani P, Elgorban AM, Bahkali AH, Zaghloul NS, Badawy MM, Das A, Khan SS. Visible light driven photocatalytic activity and efficient antibacterial activity of ZnFe2O4 decorated CdO nanohybrid heterostructures synthesized by ultrasonic-assisted method. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Jose V, Jose V, Freeda Christy CE, Nesaraj AS. Spinel-based electrode materials for application in electrochemical supercapacitors – present status and future prospects. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1956968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vismaya Jose
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, Tamil Nadu, India
| | - Vinaya Jose
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, Tamil Nadu, India
| | - Clementz Edwardraj Freeda Christy
- Department of Civil Engineering, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, Tamil Nadu, India
| | - Arputharaj Samson Nesaraj
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, Tamil Nadu, India
| |
Collapse
|
8
|
Bohra M, Alman V, Arras R. Nanostructured ZnFe 2O 4: An Exotic Energy Material. NANOMATERIALS 2021; 11:nano11051286. [PMID: 34068267 PMCID: PMC8153140 DOI: 10.3390/nano11051286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 11/16/2022]
Abstract
More people, more cities; the energy demand increases in consequence and much of that will rely on next-generation smart materials. Zn-ferrites (ZnFe2O4) are nonconventional ceramic materials on account of their unique properties, such as chemical and thermal stability and the reduced toxicity of Zn over other metals. Furthermore, the remarkable cation inversion behavior in nanostructured ZnFe2O4 extensively cast-off in the high-density magnetic data storage, 5G mobile communication, energy storage devices like Li-ion batteries, supercapacitors, and water splitting for hydrogen production, among others. Here, we review how aforesaid properties can be easily tuned in various ZnFe2O4 nanostructures depending on the choice, amount, and oxidation state of metal ions, the specific features of cation arrangement in the crystal lattice and the processing route used for the fabrication.
Collapse
Affiliation(s)
- Murtaza Bohra
- Department of Physics, École Centrale School of Engineering (MEC), Mahindra University, Survey Number 62/1A, Bahadurpally Jeedimetla, Hyderabad 500043, India;
- Correspondence:
| | - Vidya Alman
- Department of Physics, École Centrale School of Engineering (MEC), Mahindra University, Survey Number 62/1A, Bahadurpally Jeedimetla, Hyderabad 500043, India;
| | - Rémi Arras
- Centre d’Elaboration de Matériaux et d’Etudes Structurales (CEMES), Université de Toulouse, CNRS, UPS, 29 rue Jeanne Marvig, F-31055 Toulouse, France;
| |
Collapse
|
9
|
Chen TW, Rajaji U, Chen SM, Al Mogren MM, Hochlaf M, Al Harbi SDA, Ramalingam RJ. A novel nanocomposite with superior electrocatalytic activity: A magnetic property based ZnFe 2O 4 nanocubes embellished with reduced graphene oxide by facile ultrasonic approach. ULTRASONICS SONOCHEMISTRY 2019; 57:116-124. [PMID: 31208606 DOI: 10.1016/j.ultsonch.2019.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Herein, a novel Zinc Ferrite nanocubes (ZnFe2O4 NCs) decorated reduced graphene oxide (rGO) nanocomposite have been designed through a sonochemical method. After then, as-synthesized ZnFe2O4 NCs/rGO was characterized by XPS, XRD, HRTEM and EIS. Furthermore, the ZnFe2O4 NCs/rGO nanocomposite modified GCE (glassy carbon electrode) shows excellent electrochemical sensing performance towards biomarker of 4-nitroquinoline N-oxide (4-NQ) with fast detection. 4-NQ is one of the important cancer biomarker. Moreover, the fabricated sensor showed a wide linear window for 4-NQ between 0.025 and 534.12 µM and nanomolar detection limit (8.27 nM). Further, the as-prepared ZnFe2O4 NCs/rGO/GCE has been applied to the determination of 4-NQ in human blood and urine samples with excellent recovery results.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Umamaheswari Rajaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Muneerah Mogren Al Mogren
- Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Majdi Hochlaf
- Laboratoire Modelisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, University Paris-Est, ́5 Blvd. Descartes, 77454 Marne-la-Vallee, France
| | - Sarah Dhaif Allah Al Harbi
- Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - R Jothi Ramalingam
- Surfactant Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
William JJ, Babu IM, Muralidharan G. Lithium ferrite (α-LiFe 5O 8) nanorod based battery-type asymmetric supercapacitor with NiO nanoflakes as the counter electrode. NEW J CHEM 2019. [DOI: 10.1039/c9nj03774h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fabricated battery-type NiO//α-LiFe5O8 cell could deliver a specific energy of 30 W h Kg−1 at a specific power of 621 W kg−1 with 90.5% capacity retention at the end of 5000 GCD cycles.
Collapse
Affiliation(s)
- J. Johnson William
- Department of Physics
- The Gandhigram Rural Institute (Deemed to be University)
- Gandhigram-624302
- India
| | - I. Manohara Babu
- Department of Physics
- The Gandhigram Rural Institute (Deemed to be University)
- Gandhigram-624302
- India
| | - G. Muralidharan
- Department of Physics
- The Gandhigram Rural Institute (Deemed to be University)
- Gandhigram-624302
- India
| |
Collapse
|