1
|
Song YZ, Li MT, Qi BX, Xie JM. Synthesis of Mn2O3@Mn(Bi)OCl Composite and Its Supercapacitive Behavior. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422120251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2
|
Zhang N, Amorim I, Liu L. Multimetallic transition metal phosphide nanostructures for supercapacitors and electrochemical water splitting. NANOTECHNOLOGY 2022; 33:432004. [PMID: 35820404 DOI: 10.1088/1361-6528/ac8060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Transition metal phosphides (TMPs) have recently emerged as an important class of functional materials and been demonstrated to be outstanding supercapacitor electrode materials and catalysts for electrochemical water splitting. While extensive investigations have been devoted to monometallic TMPs, multimetallic TMPs have lately proved to show enhanced electrochemical performance compared to their monometallic counterparts, thanks to the synergistic effect between different transition metal species. This topical review summarizes recent advance in the synthesis of new multimetallic TMP nanostructures, with particular focus on their applications in supercapacitors and electrochemical water splitting. Both experimental reports and theoretical understanding of the synergy between transition metal species are comprehensively reviewed, and perspectives of future research on TMP-based materials for these specific applications are outlined.
Collapse
Affiliation(s)
- Nan Zhang
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518100, People's Republic of China
| | - Isilda Amorim
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
- Centre of Chemistry, University of Minho, Gualtar Campus, Braga, 4710-057, Portugal
| | - Lifeng Liu
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| |
Collapse
|
3
|
|
4
|
Zhang K, Zhao Z, Ren Z, Wang X. Yolk‐Shell NiCo
2
P
X
as a Bidirectional Catalyst for Liquid‐Solid Processes in Advanced Lithium‐Sulfur Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202100185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Kun Zhang
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| | - Zhenxin Zhao
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| | - Zhaowei Ren
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
| | - Xiaomin Wang
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 PR China
- Shanxi Key Laboratory of New Energy Materials and Devices Taiyuan University of Technology Taiyuan 030024 PR China
| |
Collapse
|
5
|
Liu Y, Zhong K, Liu C, Yang Y, Zhao Z, Li T, Lu Q. Size-controlled Ag quantum dots decorated on binder-free hierarchical NiCoP films by magnetron sputtering to boost electrochemical performance for supercapacitors. NANOSCALE 2021; 13:7761-7773. [PMID: 33871518 DOI: 10.1039/d1nr00815c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This paper reports novel binder-free and self-supported electrodes of hierarchical nickel-cobalt phosphide (NiCoP) films decorated with size-controlled Ag quantum dots by magnetron sputtering (Ag/NiCoP). Ag quantum dots with an average particle size of 7.90 nm uniformly distribute over the nanosheet-assembled architecture of NiCoP films. Benefitting from the good ohmic contact in the interfaces between Ag quantum dots and NiCoP nanosheets, Ag/NiCoP exhibits an ultrahigh specific capacitance of 6150 mF cm-2 (3050 F g-1 at 1 A g-1) higher than the 3445 mF cm-2 (1722 F g-1 at 1 A g-1) of bare NiCoP at 2 mA cm-2. The specific areal capacitance has been increased by 78.5% after introducing Ag quantum dots. 34% capacitance retention rate is achieved while the current density increases from 2 to 30 mA cm-2. The cycling stability displays a remarkable capacitance retention of 73% for 4000 cycles at 30 mA cm-2. These boosted electrochemical performances are mainly attributed to the synergistic effects of enough electroactive sites, high electronic conductivity, and easy electrolyte ion diffusion. An asymmetric supercapacitor is fabricated using hierarchical Ag/NiCoP as the positive electrode and activated carbon as the negative electrode. The supercapacitor delivers an energy density of 0.254 mW h cm-2 (1.81 mW h cm-3) at a power density of 1.88 mW cm-2 (13.4 mW cm-3). At a power density of 18.8 mW cm-2 (134 mW cm-3), an energy density of 0.115 mW h cm-2 (0.82 mW h cm-3) can still be maintained. This study provides an avenue to design a novel generation of supercapacitors for energy storage devices.
Collapse
Affiliation(s)
- Yang Liu
- School of Physical Science and Technology & Inner Mongolia Key Laboratory of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, China.
| | - Ke Zhong
- School of Physical Science and Technology & Inner Mongolia Key Laboratory of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, China.
| | - Caixia Liu
- School of Physical Science and Technology & Inner Mongolia Key Laboratory of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, China.
| | - Yu Yang
- School of Physical Science and Technology & Inner Mongolia Key Laboratory of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, China.
| | - Zhe Zhao
- School of Physical Science and Technology & Inner Mongolia Key Laboratory of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, China.
| | - Tiantian Li
- School of Physical Science and Technology & Inner Mongolia Key Laboratory of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, China.
| | - Qingshan Lu
- School of Physical Science and Technology & Inner Mongolia Key Laboratory of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
6
|
Feng Z, Sui Y, Sun Z, Qi J, Wei F, Ren Y, Zhan Z, Zhou M, Meng D, Zhang L, Ma L, Wang Q. Controllable synthesis of flower-like Mn-Co-P nanosheets as bifunctional electrocatalysts for overall water splitting. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Wang C, Zhang L, Yang P. Ni/Co phosphide nanoparticles embedded in N/P-doped carbon nanofibers towards enhanced hydrogen evolution. CrystEngComm 2021. [DOI: 10.1039/d0ce01621g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition-metal phosphides have been identified as effective materials for improving electrocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Changle Wang
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo
- P.R. China
- School of Material Science and Engineering
| | - Lipeng Zhang
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo
- P.R. China
| | - Ping Yang
- School of Material Science and Engineering
- University of Jinan
- Jinan
- P.R. China
| |
Collapse
|
8
|
Karuppaiah M, Sakthivel P, Asaithambi S, Bharat LK, Nagaraju G, Ahamad T, Balamurugan K, Yuvakkumar R, Ravi G. Elevated energy density and cycle stability of α-Mn2O3 3D-microspheres with addition of neodymium dopant for pouch-type hybrid supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137169] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Xu S, Yu X, Liu X, Teng C, Du Y, Wu Q. Contrallable synthesis of peony-like porous Mn-CoP nanorod electrocatalyst for highly efficient hydrogen evolution in acid and alkaline. J Colloid Interface Sci 2020; 577:379-387. [DOI: 10.1016/j.jcis.2020.05.097] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 01/22/2023]
|
10
|
Khodabakhshi M, Chen S, Ye T, Wu H, Yang L, Zhang W, Chang H. Hierarchical Highly Wrinkled Trimetallic NiFeCu Phosphide Nanosheets on Nanodendrite Ni 3S 2/Ni Foam as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36268-36276. [PMID: 32667189 DOI: 10.1021/acsami.0c11732] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The sluggish oxygen evolution reaction (OER) and costly noble-metal oxide catalysts hinder the vast usage of environmentally friendly water splitting for hydrogen production. Elemental doping by partial replacing of parent metal elements with elements of higher electronegativity is considered to be one of the most efficient strategies to promote the electrocatalytic OER performance. In this work, we synthesize an efficient hierarchical highly wrinkled NiFeCu phosphide nanosheet on nanodendrite Ni3S2/NiF substrates through partial replacement of Cu instead of Ni and Fe in NiFeP@Ni3S2/NiF by using a facile electrodeposition method. The NiFeCuP@Ni3S2/NiF electrocatalyst needs only 230, 282, and 351 mV to reach 10, 50, and 100 mA × cm-2, respectively. Notably, this electrocatalyst shows one of the lowest OER overpotentials at 10 mA/cm-2 for metal phosphides and endured the OER at 20 mA × cm-2 for 18 h with negligible voltage elevation. The X-ray photoelectron spectroscopy (XPS), double-layer capacitance (Cdl) plots, and electrochemical impedance spectroscopy show that the partial Cu doping in NiFeP@Ni3S2/NiF not only can change the electron density around Ni and Fe but also can increase the electrochemically active surface area and conductivity of electrocatalysts.
Collapse
Affiliation(s)
- Meysam Khodabakhshi
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die &Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shumin Chen
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die &Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tian Ye
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die &Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Wu
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die &Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Yang
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die &Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenfeng Zhang
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die &Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haixin Chang
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die &Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
11
|
Balasubramaniam S, Mohanty A, Balasingam SK, Kim SJ, Ramadoss A. Comprehensive Insight into the Mechanism, Material Selection and Performance Evaluation of Supercapatteries. NANO-MICRO LETTERS 2020; 12:85. [PMID: 34138304 PMCID: PMC7770895 DOI: 10.1007/s40820-020-0413-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/13/2020] [Indexed: 05/21/2023]
Abstract
Electrochemical energy storage devices (EESs) play a crucial role for the construction of sustainable energy storage system from the point of generation to the end user due to the intermittent nature of renewable sources. Additionally, to meet the demand for next-generation electronic applications, optimizing the energy and power densities of EESs with long cycle life is the crucial factor. Great efforts have been devoted towards the search for new materials, to augment the overall performance of the EESs. Although there are a lot of ongoing researches in this field, the performance does not meet up to the level of commercialization. A further understanding of the charge storage mechanism and development of new electrode materials are highly required. The present review explains the overview of recent progress in supercapattery devices with reference to their various aspects. The different charge storage mechanisms and the multiple factors involved in the performance of the supercapattery are described in detail. Moreover, recent advancements in this supercapattery research and its electrochemical performances are reviewed. Finally, the challenges and possible future developments in this field are summarized.
Collapse
Affiliation(s)
- Saravanakumar Balasubramaniam
- School for Advanced Research in Polymers, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Plastics Engineering and Technology, Bhubaneswar, 751024, India
| | - Ankita Mohanty
- School for Advanced Research in Polymers, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Plastics Engineering and Technology, Bhubaneswar, 751024, India
| | - Suresh Kannan Balasingam
- Department of Materials Science and Engineering, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Sang Jae Kim
- Nanomaterials and Systems Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea
| | - Ananthakumar Ramadoss
- School for Advanced Research in Polymers, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Plastics Engineering and Technology, Bhubaneswar, 751024, India.
| |
Collapse
|
12
|
High-performance and flexible all-solid-state hybrid supercapacitor constructed by NiCoP/CNT and N-doped carbon coated CNT nanoarrays. J Colloid Interface Sci 2020; 572:151-159. [PMID: 32240788 DOI: 10.1016/j.jcis.2020.03.084] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 11/20/2022]
Abstract
The exploration of flexible supercapacitors with high energy density is a matter of considerable interest to meet the demand of wearable electronic devices. In this work, with carbon nanotubes (CNTs) grown on carbon cloth (CC) as flexible substrate, NiCoP nanoflake-surrounded CNT nanoarrays (NiCoP/CNT) and N-doped carbon coated CNT nanoarrays (CNT@N-C) were synthesized on CC and utilized as cathode and anode materials for constructing flexible all-solid-state hybrid supercapacitor. Both them exhibit excellent electrochemical performance. NiCoP/CNT/CC composites can deliver a specific capacitance of 261.4 mAh g-1, and CNT@N-C/CC exhibits a high capacitance of 256 F g-1 at the current density of 0.5 A g-1. The hybrid supercapacitor built from the two well designed electrodes can provide a specific capacitance of 123.3 mAh g-1 at current density 1 mA g-1 within a potential window of 0-1.5 V and retain almost 85% of its initial capacitance after 5000 cycles. Furthermore, the flexible devices show the maximum energy density of 138.7 Wh kg-1 and a power density of 6.25 kW kg-1, obviously superior to some recent reported supercapacitor devices, indicating its potential in practical application.
Collapse
|
13
|
Yu L, Chen GZ. Supercapatteries as High-Performance Electrochemical Energy Storage Devices. ELECTROCHEM ENERGY R 2020. [DOI: 10.1007/s41918-020-00063-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
The development of novel electrochemical energy storage (EES) technologies to enhance the performance of EES devices in terms of energy capacity, power capability and cycling life is urgently needed. To address this need, supercapatteries are being developed as innovative hybrid EES devices that can combine the merits of rechargeable batteries with the merits of supercapacitors into one device. Based on these developments, this review will present various aspects of supercapatteries ranging from charge storage mechanisms to material selection including electrode and electrolyte materials. In addition, strategies to pair different types of electrode materials will be discussed and proposed, including the bipolar stacking of multiple supercapattery cells internally connected in series to enhance the energy density of stacks by reducing the number of bipolar plates. Furthermore, challenges for this stack design will also be discussed together with recent progress on bipolar plates.
Graphic Abstract
Supercapattery is an innovated hybrid electrochemical energy storage (EES) device that combines the merit of rechargeable battery and supercapacitor characteristics into one device. This article reviews supercapatteries from the charge storage mechanisms to the selection of materials including the materials of electrodes and electrolytes. Strategies for pairing different kinds of electrode materials and device engineering are discussed.
Collapse
|
14
|
Verma S, Sinha-Ray S, Sinha-Ray S. Electrospun CNF Supported Ceramics as Electrochemical Catalysts for Water Splitting and Fuel Cell: A Review. Polymers (Basel) 2020; 12:polym12010238. [PMID: 31963805 PMCID: PMC7023546 DOI: 10.3390/polym12010238] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 01/19/2023] Open
Abstract
With the per capita growth of energy demand, there is a significant need for alternative and sustainable energy resources. Efficient electrochemical catalysis will play an important role in sustaining that need, and nanomaterials will play a crucial role, owing to their high surface area to volume ratio. Electrospun nanofiber is one of the most promising alternatives for producing such nanostructures. A section of key nano-electrocatalysts comprise of transition metals (TMs) and their derivatives, like oxides, sulfides, phosphides and carbides, etc., as well as their 1D composites with carbonaceous elements, like carbon nanotubes (CNTs) and carbon nanofiber (CNF), to utilize the fruits of TMs’ electronic structure, their inherent catalytic capability and the carbon counterparts’ stability, and electrical conductivity. In this work, we will discuss about such TM derivatives, mostly TM-based ceramics, grown on the CNF substrates via electrospinning. We will discuss about manufacturing methods, and their electrochemical catalysis performances in regards to energy conversion processes, dealing mostly with water splitting, the metal–air battery fuel cell, etc. This review will help to understand the recent evolution, challenges and future scopes related to electrospun transition metal derivative-based CNFs as electrocatalysts.
Collapse
Affiliation(s)
- Sahil Verma
- School of Engineering, Indian Institute of Technology Mandi, Mandi HP 175075, India;
| | - Sumit Sinha-Ray
- School of Engineering, Indian Institute of Technology Mandi, Mandi HP 175075, India;
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Correspondence: (S.S.-R.); (S.S.-R.)
| | - Suman Sinha-Ray
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Corporate Innovation Center, United States Gypsum, Libertyville, IL 60048, USA
- Correspondence: (S.S.-R.); (S.S.-R.)
| |
Collapse
|
15
|
Elayappan V, Shinde PA, Veerasubramani GK, Jun SC, Noh HS, Kim K, Kim M, Lee H. Metal–organic-framework-derived hierarchical Co/CoP-decorated nanoporous carbon polyhedra for robust high-energy storage hybrid supercapacitors. Dalton Trans 2020; 49:1157-1166. [DOI: 10.1039/c9dt04522h] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrode materials exhibiting nanostructural design, high surface area, tunable pore size, and efficient ion diffusion/transportation are essential for achieving improved electrochemical performance.
Collapse
Affiliation(s)
- Vijayakumar Elayappan
- Department of Materials Science and Engineering
- Korea University
- Seoul
- Republic of Korea
| | - Pragati A. Shinde
- Nano-Electro-Mechanical Device Laboratory
- School of Mechanical Engineering
- Yonsei University
- Seoul 120-749
- South Korea
| | | | - Seong Chan Jun
- Nano-Electro-Mechanical Device Laboratory
- School of Mechanical Engineering
- Yonsei University
- Seoul 120-749
- South Korea
| | - Hyun Sung Noh
- Department of Materials Science and Engineering
- Korea University
- Seoul
- Republic of Korea
| | - Kihyun Kim
- Department of Materials Science and Engineering
- Korea University
- Seoul
- Republic of Korea
| | - Minkyung Kim
- Department of Materials Science and Engineering
- Korea University
- Seoul
- Republic of Korea
| | - Haigun Lee
- Department of Materials Science and Engineering
- Korea University
- Seoul
- Republic of Korea
| |
Collapse
|
16
|
Sulphur doped iron cobalt oxide nanocaterpillars: An electrode for supercapattery with ultrahigh energy density and oxygen evolution reaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.135076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Lu X, Li M, Wang H, Wang C. Advanced electrospun nanomaterials for highly efficient electrocatalysis. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00799g] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We highlight the recent developments of electrospun nanomaterials with controlled morphology, composition and architecture for highly efficient electrocatalysis.
Collapse
Affiliation(s)
- Xiaofeng Lu
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Meixuan Li
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Huiyuan Wang
- Key Laboratory of Automobile Materials of Ministry of Education & School of Materials Science and Engineering
- Nanling Campus
- Jilin University
- Changchun 130025
- P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|