1
|
Chavan PP, Tanwade PD, Sapner VS, Sathe BR. Spherical Ni/NiO nanoparticles decorated on nanoporous carbon (NNC) as an active electrode material for urea and water oxidation reactions. RSC Adv 2023; 13:26940-26947. [PMID: 37692351 PMCID: PMC10485654 DOI: 10.1039/d3ra04286c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Abstract
Herein, we report a chemical method for scalable synthesis of spherical Ni/NiO nanoparticle-decorated nanoporous carbon (NNC) based electrocatalytic system using a simple and easy chemical method with ultra-high activity towards urea electrooxidation. Morphological analysis by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) confirms the formation of Ni/NiO NPs on highly nanoporous carbon with an average size of ∼50 nm. X-ray diffraction (XRD) confirms NNC with a face-centred cubic (FCC) crystal structure. Ni/NiO NPs intercalated with nanoporous carbon exhibited the best electrocatalytic performance towards urea oxidation with an ultra-low onset potential of ∼0.33 V vs. SCE, and faster electrokinetic mechanism confirmed from Tafel slope (∼45 mV dec-1), EIS Rct (∼6.98 Ω), and long term durability for 7 h at 10 mA cm-2 with high CO poisoning tolerance. This work affords noble metal-free electrocatalysts for novel appliances and remarkable potential for urea determination, hydrogen generation, real-time water remediation, and energy conversion.
Collapse
Affiliation(s)
- Parag P Chavan
- Department of Chemistry, Dr Babasaheb Ambedkar Marathwada University Aurangabad 431004 MS India +91-8275306471
- Department of Chemistry, School of Science, Sandip University Nashik MS India
| | - Pratiksha D Tanwade
- Department of Chemistry, Dr Babasaheb Ambedkar Marathwada University Aurangabad 431004 MS India +91-8275306471
| | - Vijay S Sapner
- Department of Chemistry, Dr Babasaheb Ambedkar Marathwada University Aurangabad 431004 MS India +91-8275306471
- Department of Chemistry, Shri Mathuradas Mohota Collage of Science Nagpur-440024 MS India
| | - Bhaskar R Sathe
- Department of Chemistry, Dr Babasaheb Ambedkar Marathwada University Aurangabad 431004 MS India +91-8275306471
- Department of Nanotechnology, Dr Babasaheb Ambedkar Marathwada University Aurangabad 431004 MS India
| |
Collapse
|
2
|
Alamro FS, Hefnawy MA, Nafee SS, Al-Kadhi NS, Pashameah RA, Ahmed HA, Medany SS. Chitosan Supports Boosting NiCo 2O 4 for Catalyzed Urea Electrochemical Removal Application. Polymers (Basel) 2023; 15:3058. [PMID: 37514447 PMCID: PMC10384518 DOI: 10.3390/polym15143058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Currently, wastewater containing high urea levels poses a significant risk to human health. Else, electrocatalytic methodologies have the potential to transform urea present in urea-rich wastewater into hydrogen, thereby contributing towards environmental conservation and facilitating the production of sustainable energy. The characterization of the NiCo2O4@chitosan catalyst was performed by various analytical techniques, including scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Furthermore, the activity of electrodes toward urea removal was investigated by several electrochemical techniques. As a function of current density, the performance of the modified NiCo2O4@chitosan surface was employed to remove urea using electrochemical oxidation. Consequently, the current density measurement was 43 mA cm-2 in a solution of 1.0 M urea and 1.0 M KOH. Different kinetic characteristics were investigated, including charge transfer coefficient (α), Tafel slope (29 mV dec-1), diffusion coefficient (1.87 × 10-5 cm2 s-1), and surface coverage 4.29 × 10-9 mol cm-2. The electrode showed high stability whereas it lost 10.4% of its initial current after 5 h of urea oxidation.
Collapse
Affiliation(s)
- Fowzia S. Alamro
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mahmoud A. Hefnawy
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Sherif S. Nafee
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nada S. Al-Kadhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Hoda A. Ahmed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Chemistry Department, College of Sciences, Taibah University, Yanbu 30799, Saudi Arabia
| | - Shymaa S. Medany
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
3
|
Mattarozzi L, Cattarin S, Comisso N, Musiani M, Vázquez‐Gómez L, Verlato E. Electrodeposition of Ni−Rh Alloys and their Use as Cathodes for Nitrate Reduction in Alkaline Solutions. ChemElectroChem 2023. [DOI: 10.1002/celc.202201122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Luca Mattarozzi
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia ICMATE-CNR C.so Stati Uniti 4 35127 Padova Italy
| | - Sandro Cattarin
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia ICMATE-CNR C.so Stati Uniti 4 35127 Padova Italy
| | - Nicola Comisso
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia ICMATE-CNR C.so Stati Uniti 4 35127 Padova Italy
| | - Marco Musiani
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia ICMATE-CNR C.so Stati Uniti 4 35127 Padova Italy
| | - Lourdes Vázquez‐Gómez
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia ICMATE-CNR C.so Stati Uniti 4 35127 Padova Italy
| | - Enrico Verlato
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia ICMATE-CNR C.so Stati Uniti 4 35127 Padova Italy
| |
Collapse
|
4
|
Huang X, He R, Wang S, Yang Y, Feng L. High-Valent Ni Species Induced by Inactive MoO 2 for Efficient Urea Oxidation Reaction. Inorg Chem 2022; 61:18318-18324. [DOI: 10.1021/acs.inorgchem.2c03498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xingyu Huang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou225002, China
| | - Runze He
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou225002, China
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou325035, China
| | - Shuli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou225002, China
| | - Yun Yang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou325035, China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou225002, China
| |
Collapse
|
5
|
NiFe nanosheets as urea oxidation reaction electrocatalysts for urea removal and energy-saving hydrogen production. Biosens Bioelectron 2022; 211:114380. [DOI: 10.1016/j.bios.2022.114380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/02/2022]
|
6
|
Bimetallic Cu/Fe MOF-Based Nanosheet Film via Binder-Free Drop-Casting Route: A Highly Efficient Urea-Electrolysis Catalyst. NANOMATERIALS 2022; 12:nano12111916. [PMID: 35683771 PMCID: PMC9182062 DOI: 10.3390/nano12111916] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022]
Abstract
Developing efficient electrocatalysts for urea oxidation reaction (UOR) can be a promising alternative strategy to substitute the sluggish oxygen evolution reaction (OER), thereby producing hydrogen at a lower cell-voltage. Herein, we synthesized a binder-free thin film of ultrathin sheets of bimetallic Cu-Fe-based metal–organic frameworks (Cu/Fe-MOFs) on a nickel foam via a drop-casting route. In addition to the scalable route, the drop-casted film-electrode demonstrates the lower UOR potentials of 1.59, 1.58, 1.54, 1.51, 1.43 and 1.37 V vs. RHE to achieve the current densities of 2500, 2000, 1000, 500, 100 and 10 mA cm−2, respectively. These UOR potentials are relatively lower than that acquired by the pristine Fe-MOF-based film-electrode synthesized via a similar route. For example, at 1.59 V vs. RHE, the Cu/Fe-MOF electrode exhibits a remarkably ultra-high anodic current density of 2500 mA cm−2, while the pristine Fe-MOF electrode exhibits only 949.10 mA cm−2. It is worth noting that the Cu/Fe-MOF electrode at this potential exhibits an OER current density of only 725 mA cm−2, which is far inconsequential as compared to the UOR current densities, implying the profound impact of the bimetallic cores of the MOFs on catalyzing UOR. In addition, the Cu/Fe-MOF electrode also exhibits a long-term electrochemical robustness during UOR.
Collapse
|
7
|
Flower-like manganese oxide with intercalated nickel ions (Ni3+) as a catalytic electrode material for urea oxidation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Wang S, Zhu J, Wu X, Feng L. Microwave-assisted hydrothermal synthesis of NiMoO4 nanorods for high-performance urea electrooxidation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Ni 2P nanocrystals embedded Ni-MOF nanosheets supported on nickel foam as bifunctional electrocatalyst for urea electrolysis. Sci Rep 2021; 11:21414. [PMID: 34725381 PMCID: PMC8560839 DOI: 10.1038/s41598-021-00776-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022] Open
Abstract
It’s highly desired but challenging to synthesize self-supporting nanohybrid made of conductive nanoparticles with metal organic framework (MOF) materials for the application in the electrochemical field. In this work, we report the preparation of Ni2P embedded Ni-MOF nanosheets supported on nickel foam through partial phosphidation (Ni2P@Ni-MOF/NF). The self-supporting Ni2P@Ni-MOF/NF was directly tested as electrode for urea electrolysis. When served as anode for urea oxidation reaction (UOR), it only demands 1.41 V (vs RHE) to deliver a current of 100 mA cm−2. And the overpotential of Ni2P@Ni-MOF/NF to reach 10 mA cm−2 for hydrogen evolution reaction HER was only 66 mV, remarkably lower than Ni2P/NF (133 mV). The exceptional electrochemical performance was attributed to the unique structure of Ni2P@Ni-MOF and the well exposed surface of Ni2P. Furthermore, the Ni2P@Ni-MOF/NF demonstrated outstanding longevity for both HER and UOR. The electrolyzer constructed with Ni2P@Ni-MOF/NF as bifunctional electrode can attain a current density of 100 mA cm−2 at a cell voltage as low as 1.65 V. Our work provides new insights for prepare MOF based nanohydrid for electrochemical application.
Collapse
|
10
|
Guo C, Shen S, Li M, Wang Y, Li J, Xing Y, Wang C, Pan H. Rapid in situ synthesis of MgAl-LDH on η-Al2O3 for efficient hydrolysis of urea in wastewater. J Catal 2021. [DOI: 10.1016/j.jcat.2020.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Torralba E, Laborda E, Molina A, Cachet‐Vivier C, Bastide S. Insights into the Voltammetry of Cavity Microelectrodes Filled with Metal Powders: The Value of Square Wave Voltammetry. ChemElectroChem 2021. [DOI: 10.1002/celc.202001586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Encarnación Torralba
- Institut de Chimie et des Matériaux Paris-Est Université Paris-Est, UMR 7182 CNRS-UPEC 2 rue H. Dunant 94320 Thiais France
| | - Eduardo Laborda
- Departamento de Química Física Facultad de Química Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| | - Angela Molina
- Departamento de Química Física Facultad de Química Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| | - Christine Cachet‐Vivier
- Institut de Chimie et des Matériaux Paris-Est Université Paris-Est, UMR 7182 CNRS-UPEC 2 rue H. Dunant 94320 Thiais France
| | - Stéphane Bastide
- Institut de Chimie et des Matériaux Paris-Est Université Paris-Est, UMR 7182 CNRS-UPEC 2 rue H. Dunant 94320 Thiais France
| |
Collapse
|
12
|
Anil AG, Sunil Kumar Naik T, Subramanian S, Ramamurthy PC. A novel non-enzymatic urea sensor based on the nickel complex of a benzimidazoyl pyridine derivative. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Chen YT, Chen PY, Ju SP. Preparation of Ni nanotube-modified electrodes via galvanic displacement on sacrificial Zn templates: Solvent effects and attempts for non-enzymatic electrochemical detection of urea. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Yu YH, Su JF, Shih Y, Wang J, Wang PY, Huang CP. Hazardous wastes treatment technologies. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1833-1860. [PMID: 32866315 DOI: 10.1002/wer.1447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
A review of the literature published in 2019 on topics related to hazardous waste management in water, soils, sediments, and air. The review covered treatment technologies applying physical, chemical, and biological principles for the remediation of contaminated water, soils, sediments, and air. PRACTICAL POINTS: This report provides a review of technologies for the management of waters, wastewaters, air, sediments, and soils contaminated by various hazardous chemicals including inorganic (e.g., oxyanions, salts, and heavy metals), organic (e.g., halogenated, pharmaceuticals and personal care products, pesticides, and persistent organic chemicals) in three scientific areas of physical, chemical, and biological methods. Physical methods for the management of hazardous wastes including general adsorption, sand filtration, coagulation/flocculation, electrodialysis, electrokinetics, electro-sorption ( capacitive deionization, CDI), membrane (RO, NF, MF), photocatalysis, photoelectrochemical oxidation, sonochemical, non-thermal plasma, supercritical fluid, electrochemical oxidation, and electrochemical reduction processes were reviewed. Chemical methods including ozone-based, hydrogen peroxide-based, potassium permanganate processes, and Fenton and Fenton-like process were reviewed. Biological methods such as aerobic, anoxic, anaerobic, bioreactors, constructed wetlands, soil bioremediation and biofilter processes for the management of hazardous wastes, in mode of consortium and pure culture were reviewed. Case histories were reviewed in four areas including contaminated sediments, contaminated soils, mixed industrial solid wastes and radioactive wastes.
Collapse
Affiliation(s)
- Yu Han Yu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Jenn Fang Su
- Department of Chemical and Materials Engineering, Tamkang University, New Taipei City, Taiwan
| | - Yujen Shih
- Graduate Institute of Environmental Essngineering, National Sun yat-sen University, Kaohsiung, Taiwan
| | - Jianmin Wang
- Department of Civil Architectural and Environmental Engineering, Missouri University of Science & Technology, Rolla, Missouri
| | - Po Yen Wang
- Department of Civil Engineering, Widener University, Chester, Pennsylvania, USA
| | - Chin Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
15
|
Barbosa JR, Paranhos CH, Alves OC, Checca NR, Serna JP, Rossi AL, Silva JCM. Low loading platinum dispersed on Ni/C nanoparticles as high active catalysts for urea electrooxidation reaction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Zhu B, Liang Z, Zou R. Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906133. [PMID: 31913584 DOI: 10.1002/smll.201906133] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Urea oxidation reaction (UOR) is the underlying reaction that determines the performance of modern urea-based energy conversion technologies. These technologies include electrocatalytic and photoelectrochemical urea splitting for hydrogen production and direct urea fuel cells as power engines. They have demonstrated great potentials as alternatives to current water splitting and hydrogen fuel cell systems with more favorable operating conditions and cost effectiveness. At the moment, UOR performance is mainly limited by the 6-electron transfer process. In this case, various material design and synthesis strategies have recently been reported to produce highly efficient UOR catalysts. The performance of these advanced catalysts is optimized by the modification of their structural and chemical properties, including porosity development, heterostructure construction, defect engineering, surface functionalization, and electronic structure modulation. Considering the rich progress in this field, the recent advances in the design and synthesis of UOR catalysts for urea electrolysis, photoelectrochemical urea splitting, and direct urea fuel cells are reviewed here. Particular attention is paid to those design concepts, which specifically target the characteristics of urea molecules. Moreover, challenges and prospects for the future development of urea-based energy conversion technologies and corresponding catalysts are also discussed.
Collapse
Affiliation(s)
- Bingjun Zhu
- College of Space and Environment, Beihang University, Beijing, 100191, China
| | - Zibin Liang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
17
|
Nickel-Rhodium bimetallic dispersions supported on nickel foam as the efficient catalyst for urea electrooxidation in alkaline medium. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135211] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Chen YT, Li CH, Chen PY. Galvanic displacement on electrodeposited tangled Zn nanowire sacrificial template for preparing porous and hollow Ni electrodes in ionic liquid. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Xu Y, Chai X, Ren T, Yu S, Yu H, Wang Z, Li X, Wang L, Wang H. Ir-Doped Ni-based metal–organic framework ultrathin nanosheets on Ni foam for enhanced urea electro-oxidation. Chem Commun (Camb) 2020; 56:2151-2154. [DOI: 10.1039/c9cc09484a] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NiIr-based metal–organic frameworks grown on a nickel foam substrate (NiIr-MOF/NF) are synthesized by a solvothermal method and directly used for urea electro-oxidation.
Collapse
Affiliation(s)
- You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Xingjie Chai
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Tianlun Ren
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Shanshan Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| |
Collapse
|