1
|
Shahidi S, Kalaoglu F, Naji L, Rahmanian A, Mongkholrattanasit R. MnO 2/Ni-Cu-Plated Polyester Fabric as a Free-Standing Electrode in Supercapacitor Applications. ACS OMEGA 2025; 10:7091-7101. [PMID: 40028091 PMCID: PMC11865987 DOI: 10.1021/acsomega.4c10183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
The main objective of this research is to investigate the electrochemical characteristics of Ni-Cu-plated polyester when MnO2 is deposited on it and serves as a flexible electrode. For this purpose, the Ni-Cu-plated polyester electrode fabrics prepared in this way were deposited with MnO2 over different immersion times. The conductive polyester electrode that was prepared underwent immersion in an aqueous solution of KMnO4 (0.1 M) for durations of 5, 10, and 30 min. The electrical resistance of the prepared samples was measured using a two-point probe technique. Additionally, the electrochemical properties of the Ni-Cu-plated polyester with MnO2 deposition were examined using a three-electrode cell setup under ambient conditions. The surface structure and elemental composition of the sample electrodes were examined with a scanning electron microscope (SEM). In this research, the asymmetric supercapacitor cell (ASC) consisting of a Ni-Cu/MnO2-deposited textile as the cathode electrode and active carbon-coated activated carbon cloth as the anode electrode was assembled. Also, the symmetric supercapacitor cell (SSC) using Ni-Cu/MnO2 deposited polyester as both the anode and cathode was assembled. Cyclic voltammetry (CV), galvanostatic charging-discharging (GCD), and electrochemical impedance spectroscopy (EIS) measurements were utilized to assess and compare the electrochemical performance. The areal specific capacitances of the ASC at current densities of 2, 4, 8, and 16 mA cm-2 were calculated to be 558.6, 481.9, 435.5, and 330 mF cm-2, respectively. In comparison, the achieved storage results related to ASC are far higher than those of SSC. The results are discussed in the text in detail.
Collapse
Affiliation(s)
- Sheila Shahidi
- Department
of Textile, Faculty of Engineering and Agriculture, Islamic Azad University, Arak Branch, Arak 38361-1-9131, Iran
| | - Fatma Kalaoglu
- Department
of Textile Engineering, Faculty of Textile Technologies and Design, Istanbul Technical University, Istanbul 34437, Turkey
| | - Leila Naji
- Department
of Chemistry, Amirkabir University of Technology
(Tehran Polytechnic), Tehran 15916-3-4311, Iran
| | - Alireza Rahmanian
- Department
of Chemistry, Amirkabir University of Technology
(Tehran Polytechnic), Tehran 15916-3-4311, Iran
| | - Rattanaphol Mongkholrattanasit
- Department
of Textile Chemistry Technology, Faculty of Industrial Textiles and
Fashion Design, Rajamangala University of
Technology Phra Nakhon, Bangkok 10300, Thailand
| |
Collapse
|
2
|
Khan SS, Kokilavani S, Alahmadi TA, Ansari MJ. Enhanced visible light driven photodegradation of rifampicin and Cr(VI) reduction activity of ultra-thin ZnO nanosheets/CuCo 2S 4QDs: A mechanistic insights, degradation pathway and toxicity assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123760. [PMID: 38492754 DOI: 10.1016/j.envpol.2024.123760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/18/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
In this study, we focused on fabrication of porous ultra-thin ZnO nanosheet (PUNs)/CuCo2S4 quantum dots (CCS QDs) for visible light-driven photodegradation of rifampicin (RIF) and Cr(VI) reduction. The morphology, structural, optical and textural properties of fabricated photocatalyst were critically analyzed with different analytical and spectroscopic techniques. An exceptionally high RIF degradation (99.97%) and maximum hexavalent Cr(VI) reduction (96.17%) under visible light was achieved at 10 wt% CCS QDs loaded ZnO, which is 213% and 517% greater than bare ZnO PUNs. This enhancement attributed to the improved visible light absorption, interfacial synergistic effect, and high surface-rich active sites. Extremely high generation of ●OH attributed to the spin-orbit coupling in ZnO PUNs@CCS QDs and the existence of oxygen vacancies. Besides, the ZnOPUNs@CCS QDs, forming Z-scheme heterojunctions, enhanced the separation of photogenerated charge carriers. We investigated the influencing factors such as pH, inorganic ions, catalyst dosage and drug dosage on the degradation process. More impressively, a stable performance of ZnO PUNs@CCS QDs obtained even after six consecutive degradation (85.9%) and Cr(VI) reduction (67.7%) cycles. Furthermore, the toxicity of intermediates produced during the photodegradation process were assessed using ECOSAR program. This work provides a new strategy for ZnO-based photocatalysis as a promising candidate for the treatment of various contaminants present in water bodies.
Collapse
Affiliation(s)
- S Sudheer Khan
- Department of Oral Medicine and Radiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - S Kokilavani
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| |
Collapse
|
3
|
Chen X, Ge H, Yang W, Yang P. Construction of Ti 3C 2T x MXene wrapped urchin-like CuCo 2S 4 microspheres for high-performance asymmetric supercapacitors. Dalton Trans 2023; 52:3746-3754. [PMID: 36857706 DOI: 10.1039/d3dt00025g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Copper cobalt sulfide (CuCo2S4) nanomaterials are regarded as promising electrode materials for high-performance supercapacitors due to their abundant redox states and considerable theoretical capacities. However, the intrinsic poor electrical conductivity, sluggish reaction kinetics and insufficient number of electroactive sites of these materials are huge barriers to realize their practical applications. In this study, a facile two-step strategy to engineer a hierarchical 3D porous CuCo2S4/MXene composite electrode is presented for enhanced storage properties. This well-constructed CuCo2S4/MXene composite not only provides abundant active sites for the faradaic reaction, but also offers more efficient pathways for rapid electron/ion transport and restricts the volumetric expansion during the charge/discharge process. When evaluated in a 3 M KOH electrolyte, the CuCo2S4/MXene-3 electrode exhibits a specific capacity of 1351.6 C g-1 at 1 A g-1 while retaining excellent cycling stability (95.2% capacity retention at 6 A g-1 after 10 000 cycles). Additionally, the solid-state asymmetric supercapacitor (ASC) CuCo2S4/MXene//AC device displays an energy density of 78.1 W h kg-1 and a power density of 800.7 W kg-1. Two ASC devices connected in series can illuminate a blue LED indicator for more than 20 min, demonstrating promising prospects for practical applications. These electrochemical properties indicate that the high-performance CuCo2S4/MXene composites are promising electrode materials for advanced asymmetric supercapacitors.
Collapse
Affiliation(s)
- Xiaobo Chen
- School of Physics and Electronic Engineering, Jiangsu Intelligent Optoelectronic Device and Measurement and Control Engineering Research Center, Yancheng Teachers University, Yancheng, 224051, PR China.
| | - Huiran Ge
- School of Physics and Electronic Engineering, Jiangsu Intelligent Optoelectronic Device and Measurement and Control Engineering Research Center, Yancheng Teachers University, Yancheng, 224051, PR China.
| | - Wen Yang
- Key Laboratory of Education Ministry for Advanced Technique and Preparation of Renewable Energy Materials, Solar Energy Research Institute, Yunnan Normal University, Kunming 650500, PR China.
| | - Peizhi Yang
- Key Laboratory of Education Ministry for Advanced Technique and Preparation of Renewable Energy Materials, Solar Energy Research Institute, Yunnan Normal University, Kunming 650500, PR China.
| |
Collapse
|
4
|
Konwar M, Mahanta B, Patar S, Saikia P, Guha AK, Borthaku LJ. A Reduced ‐ Graphene ‐ Oxide Entrapped CuCo
2
S
4
Nano‐Array for High‐performance Supercapacitor Electrode. ChemistrySelect 2022. [DOI: 10.1002/slct.202203585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Madhabi Konwar
- Department of Chemistry Gauhati University Guwahati Assam India, Pin- 781014
| | - Baishali Mahanta
- Department of Chemistry Gauhati University Guwahati Assam India, Pin- 781014
| | - Shyamalee Patar
- Department of Chemistry Gauhati University Guwahati Assam India, Pin- 781014
| | - Pranjal Saikia
- Department of Chemistry Nowgong College (Autonomous) Nagaon Assam India, Pin- 782001
| | - Ankur Kanti Guha
- Department of Chemistry Cotton University Panbazar Guwahati Assam India, Pin- 781001
| | - Lakhya Jyoti Borthaku
- Department of Chemistry Nowgong College (Autonomous) Nagaon Assam India, Pin- 782001
| |
Collapse
|
5
|
Abuali M, Arsalani N, Ahadzadeh I. On the effect of polypyrrole on electrochemical performance of micro-sized hollow spheres of NiCo2S4 and CuCo2S4 nanoparticles. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Zhu X, Liu S. Al2O3-assisted synthesis of hollow CuCo2S4 nanospheres with rich sulfur vacancies for hybrid supercapacitor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Zhong Y, Liang J, Zhang B, Wang F, Huang W, Cai G, Zhang C, Xin Y, Chen B, He X. Highly stable, stretchable, and versatile electrodes by coupling of NiCoS nanosheets with metallic networks for flexible electronics. NANOSCALE 2022; 14:8172-8182. [PMID: 35621128 DOI: 10.1039/d2nr01890j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rapid development of portable electronics has contributed to an urgent demand for versatile and flexible electrodes of wearable energy storage devices and pressure sensors. We fabricate a stretchable electrode by coupling the nickel-cobalt sulfide (NiCoS) nanosheet layer with Ag@NiCo nanowire (NW) networks. NiCoS wrinkled nanostructure, highly conductive networks, and intense interactions between substrate/networks and active materials/networks endow the electrodes with excellent energy storage capacity, superior electrochemical/mechanical stability, and good conductivity. A high-performance asymmetric supercapacitor is developed using the composite electrode. It operates in a wide potential window of 1.4 V and achieves a maximum energy density of 40.0 W h kg-1 at a power density of 1.1 kW kg-1; it also exhibits excellent mechanical flexibility and good waterproof performance. Moreover, a sandwiched capacitive pressure sensor constructed using the same electrodes has a wide sensing range (up to 260 kPa), low detection limit (∼47 mN), fast response (∼66 ms), and excellent mechanical stability (10 000 cycles). This study demonstrates that the appropriate design of the functional electrode facilitates the construction of various high-performance devices, denoting the versatility of our electrodes in the development of wearable electronics.
Collapse
Affiliation(s)
- Yu Zhong
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China.
| | - Jionghong Liang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China.
| | - Bolun Zhang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China.
| | - Fengming Wang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China.
| | - Weiqing Huang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China.
| | - Guofa Cai
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, PR China
| | - Chi Zhang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China.
| | - Yue Xin
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China.
| | - Bohua Chen
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China.
| | - Xin He
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China.
| |
Collapse
|
8
|
Rahmanian A, Naji L. Graphene oxide-assisted electrochemical growth of Ni(OH)2 nanoflowers on nickel foam as electrode material for high-performance supercapacitors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Guo Y, Yan B, Deng F, Shao P, Zou J, Luo X, Zhang S, Li X. Lattice expansion boosting photocatalytic degradation performance of CuCo2S4 with an inherent dipole moment. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Wang J, Zhang D, She W, Gao S, Wang K, Wang Y, Han Z, Chen X, Li L. Flower‐like NiCo‐carbonate Hydroxides for High‐performance Solid‐state Hybrid Supercapacitor. ELECTROANAL 2022. [DOI: 10.1002/elan.202100542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jingruo Wang
- Key Laboratory of Low-Carbon Energy and Chemical Engineering of Gansu Province Lanzhou University of Technology 730050 Lanzhou China
- College of Petrochemical Technology Lanzhou University of Technology 730050 Lanzhou China
| | - Deyi Zhang
- Key Laboratory of Low-Carbon Energy and Chemical Engineering of Gansu Province Lanzhou University of Technology 730050 Lanzhou China
- College of Petrochemical Technology Lanzhou University of Technology 730050 Lanzhou China
| | - Wenna She
- Key Laboratory of Low-Carbon Energy and Chemical Engineering of Gansu Province Lanzhou University of Technology 730050 Lanzhou China
- College of Petrochemical Technology Lanzhou University of Technology 730050 Lanzhou China
| | - Shiyao Gao
- Key Laboratory of Low-Carbon Energy and Chemical Engineering of Gansu Province Lanzhou University of Technology 730050 Lanzhou China
- College of Petrochemical Technology Lanzhou University of Technology 730050 Lanzhou China
| | - Kunjie Wang
- Key Laboratory of Low-Carbon Energy and Chemical Engineering of Gansu Province Lanzhou University of Technology 730050 Lanzhou China
- College of Petrochemical Technology Lanzhou University of Technology 730050 Lanzhou China
| | - Yi Wang
- Key Laboratory of Low-Carbon Energy and Chemical Engineering of Gansu Province Lanzhou University of Technology 730050 Lanzhou China
- College of Petrochemical Technology Lanzhou University of Technology 730050 Lanzhou China
| | - Zhiyong Han
- College of Petrochemical Technology Lanzhou University of Technology 730050 Lanzhou China
| | - Xuefu Chen
- College of Petrochemical Technology Lanzhou University of Technology 730050 Lanzhou China
| | - Lan Li
- College of Petrochemical Technology Lanzhou University of Technology 730050 Lanzhou China
| |
Collapse
|
11
|
Dahiya Y, Hariram M, Kumar M, Jain A, Sarkar D. Modified transition metal chalcogenides for high performance supercapacitors: Current trends and emerging opportunities. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214265] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Freeze gelation 3D printing of rGO-CuCo2S4 nanocomposite for high-performance supercapacitor electrodes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Wang C, Song Z, Shi P, Lv L, Wan H, Tao L, Zhang J, Wang H, Wang H. High-rate transition metal-based cathode materials for battery-supercapacitor hybrid devices. NANOSCALE ADVANCES 2021; 3:5222-5239. [PMID: 36132631 PMCID: PMC9418927 DOI: 10.1039/d1na00523e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/30/2021] [Indexed: 05/14/2023]
Abstract
With the rapid development of portable electronic devices, electric vehicles and large-scale grid energy storage devices, there is a need to enhance the specific energy density and specific power density of related electrochemical devices to meet the fast-growing requirements of energy storage. Battery-supercapacitor hybrid devices (BSHDs), combining the high-energy-density feature of batteries and the high-power-density properties of supercapacitors, have attracted mass attention in terms of energy storage. However, the electrochemical performances of cathode materials for BSHDs are severely limited by poor electrical conductivity and ion transport kinetics. As the rich redox reactions induced by transition metal compounds are able to offer high specific capacity, they are an ideal choice of cathode materials. Therefore, this paper reviews the currently advanced progress of transition metal compound-based cathodes with high-rate performance in BSHDs. We discuss some efficient strategies of enhancing the rate performance of transition metal compounds, including developing intrinsic electrode materials with high conductivity and fast ion transport; modifying materials, such as inserting defects and doping; building composite structures and 3D nano-array structures; interfacial engineering and catalytic effects. Finally, some suggestions are proposed for the potential development of cathodes for BSHDs, which may provide a reference for significant progress in the future.
Collapse
Affiliation(s)
- Cong Wang
- Hubei Yangtze Memory Labs, School of Microelectronics, Hubei University Wuhan 430000 PR China
| | - Zehao Song
- Hubei Yangtze Memory Labs, School of Microelectronics, Hubei University Wuhan 430000 PR China
| | - Pei Shi
- Hubei Yangtze Memory Labs, School of Microelectronics, Hubei University Wuhan 430000 PR China
| | - Lin Lv
- Hubei Yangtze Memory Labs, School of Microelectronics, Hubei University Wuhan 430000 PR China
| | - Houzhao Wan
- Hubei Yangtze Memory Labs, School of Microelectronics, Hubei University Wuhan 430000 PR China
| | - Li Tao
- Hubei Yangtze Memory Labs, School of Microelectronics, Hubei University Wuhan 430000 PR China
| | - Jun Zhang
- Hubei Yangtze Memory Labs, School of Microelectronics, Hubei University Wuhan 430000 PR China
| | - Hanbin Wang
- Hubei Yangtze Memory Labs, School of Microelectronics, Hubei University Wuhan 430000 PR China
| | - Hao Wang
- Hubei Yangtze Memory Labs, School of Microelectronics, Hubei University Wuhan 430000 PR China
| |
Collapse
|
14
|
Magnetically Recoverable Graphene Oxide Wrapped CuCo2S4/Iron Oxides Composites for Supercapacitor Application and Fenton Degradation of Organic Molecules. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01840-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Tian Z, Zhao Z, Wang X, Chen Y, Li D, Linghu Y, Wang Y, Wang C. A high-performance asymmetric supercapacitor-based (CuCo)Se 2/GA cathode and FeSe 2/GA anode with enhanced kinetics matching. NANOSCALE 2021; 13:6489-6498. [PMID: 33885528 DOI: 10.1039/d1nr00288k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The performance of asymmetric supercapacitors (ASCs) is limited by the poorly matched electrochemical kinetics of available electrode materials, which generally results in reduced energy density and inadequate voltage utilization. Herein, a porous conductive graphene aerogel (GA) scaffold was decorated with copper cobalt selenide ((CuCo)Se2) or iron selenide (FeSe2) to construct positive and negative electrodes, respectively. The (CuCo)Se2/GA and FeSe2/GA electrodes exhibited high specific capacitances of 672 and 940 F g-1, respectively, at 1 A g-1. The capacitance contributions from the Co3+/Co2+ and Fe3+/Fe2+ redox couple for the positive and negative electrodes were determined to elucidate the energy storage mechanism. Furthermore, the kinetics study of the two electrodes was performed, revealing b values ranging between 0.7 and 1 at various scan rates and demonstrating that the surface-controlled processes played the dominant role, leading to fast charge storage capability for both electrodes. Fabrication of an ASC device with a configuration of (CuCo)Se2/GA//FeSe2/GA resulted in a voltage of 1.6 V, a high energy density of 39 W h kg-1, and a power density of 702 W kg-1. The excellent electrochemical performances of the (CuCo)Se2/GA and FeSe2/GA electrodes demonstrate their potential applications in energy storage devices.
Collapse
Affiliation(s)
- Zhen Tian
- School of Materials Science and Engineering, North University of China, 030051 Taiyuan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Majumdar D. Recent progress in copper sulfide based nanomaterials for high energy supercapacitor applications. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114825] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
He M, Nan Z. 3D-structured CuCo2S4 as an excellent Fenton-like catalyst under alkaline solution. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Zhang H, Zhang X, Li H, Gao Y, Yan J, Zhu K, Ye K, Cheng K, Wang G, Cao D. Copper niobate nanowires immobilized on reduced graphene oxide nanosheets as rate capability anode for lithium ion capacitor. J Colloid Interface Sci 2020; 583:652-660. [PMID: 33039862 DOI: 10.1016/j.jcis.2020.09.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 01/29/2023]
Abstract
Binary metal niobium oxides can offer a higher specific capacity compared to niobium pentoxide (Nb2O5) and thus are ideal anode candidates for lithium ion capacitors (LICs). However, their lower electronic conductivity limits their ability to achieve high energy and power densities. In this paper, one-dimensional (1D) copper niobate (CuNb2O6) nanowires are successfully prepared by electrospinning technology and then immobilized on two-dimensional (2D) reduced graphene oxide (rGO) nanosheets to form a unique 1D nanowire/2D nanosheet CuNb2O6/rGO structure. The 1D/2D CuNb2O6/rGO electrode exhibits a high specific capacity of 312.2 mAh g-1 at 100 mA g-1 as the anode of LICs. The proposed Li+ storage mechanism of the CuNb2O6 anode involves CuNb2O6 decomposition into lithium niobate (Li3NbO4) and copper (Cu) during the initial lithium insertion process. The intercalation-type Li3NbO4 will further serve as the host to Li+ and the inactive Cu phase will act as a conductive network for electron transportation. Furthermore, the energy density of the assembled CuNb2O6/rGO//activated carbon (CuNb2O6/rGO//AC) device could achieve a value as high as 92.1 Wh kg-1 and could thus be considered as a possible alternative electrode material for high energy and power LICs.
Collapse
Affiliation(s)
- Henan Zhang
- College of Engineering, Northeast Agricultural University, China; College of Material Science and Chemical Engineering, Harbin Engineering University, China
| | - Xu Zhang
- College of Material Science and Chemical Engineering, Harbin Engineering University, China
| | - Huipeng Li
- College of Material Science and Chemical Engineering, Harbin Engineering University, China
| | - Yinyi Gao
- College of Material Science and Chemical Engineering, Harbin Engineering University, China.
| | - Jun Yan
- College of Material Science and Chemical Engineering, Harbin Engineering University, China
| | - Kai Zhu
- College of Material Science and Chemical Engineering, Harbin Engineering University, China
| | - Ke Ye
- College of Material Science and Chemical Engineering, Harbin Engineering University, China
| | - Kui Cheng
- College of Engineering, Northeast Agricultural University, China; College of Material Science and Chemical Engineering, Harbin Engineering University, China.
| | - Guiling Wang
- College of Material Science and Chemical Engineering, Harbin Engineering University, China
| | - Dianxue Cao
- College of Material Science and Chemical Engineering, Harbin Engineering University, China
| |
Collapse
|
19
|
Cai L, Wan H, Zhang Q, Mwizerwa JP, Xu X, Yao X. In Situ Coating of Li 7P 3S 11 Electrolyte on CuCo 2S 4/Graphene Nanocomposite as a High-Performance Cathode for All-Solid-State Lithium Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33810-33816. [PMID: 32662624 DOI: 10.1021/acsami.0c09295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A cathode material, CuCo2S4/graphene@10%Li7P3S11, is reported for all-solid-state lithium batteries with high performance. The electrical conductivity of CuCo2S4 is improved by compounding with graphene. Meanwhile, Li7P3S11 electrolyte is coated on the surface of CuCo2S4/graphene nanosheets to build an intimate contact interface between the solid electrolyte and the electrode effectively, facilitating lithium-ion conduction. Benefitting from the balanced and efficient electronic and ionic conductions, all-solid-state lithium batteries using CuCo2S4/graphene@10%Li7P3S11 composite as cathode materials demonstrate superior cycling stability and rate capabilities, exhibiting an initial discharge specific capacity of 1102.25 mAh g-1 at 50 mA g-1 and reversible capacity of 556.41 mAh g-1 at a high current density of 500 mA g-1 after 100 cycles. These results demonstrate that the CuCo2S4/graphene@10%Li7P3S11 nanocomposite is a promising active material for all-solid-state lithium batteries with superior performances.
Collapse
Affiliation(s)
- Liangting Cai
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Hongli Wan
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiang Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jean Pierre Mwizerwa
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoxiong Xu
- Zhejiang Funlithium New Energy Technology Co., Ltd., Ningbo 315201, P. R. China
- Ganfeng Lithium Co., Ltd., Xinyu 338015, P. R. China
| | - Xiayin Yao
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
20
|
Xie T, Xu J, Wang J, Ma C, Su L, Dong F, Gong L. Freestanding Needle Flower Structure CuCo 2S 4 on Carbon Cloth for Flexible High Energy Supercapacitors With the Gel Electrolyte. Front Chem 2020; 8:62. [PMID: 32175304 PMCID: PMC7056745 DOI: 10.3389/fchem.2020.00062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/20/2020] [Indexed: 11/30/2022] Open
Abstract
A facile hydrothermal approach was adopted to the direct synthesis of bimetallic sulfide (CuCo2S4) on carbon cloth (CC) without binders for the supercapacitor's electrodes. A possible formation mechanism was proposed. The prepared bimetallic electrode exhibited a high specific capacitance (Csp) of 1,312 F·g−1 at 1 A·g−1, and an excellent capacitance retention of 94% at 5 A·g−1 over 5,000 cycles. In addition, the asymmetric supercapacitor (CuCo2S4/CC//AC/CC) exhibited energy density (42.9 wh·kg−1 at 0.8 kW·kg−1) and outstanding cycle performance (80% initial capacity retention after 5,000 cycles at 10 A·g−1). It should be noted that the electrochemical performance of a supercapacitor device is quite stable at different bending angles. Two charged devices in series can light 28 red-colored LEDs (2.0 V) for 5 min. All of this serves to indicate the potentially high application value of CuCo2S4.
Collapse
Affiliation(s)
- Tian Xie
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jinxiao Xu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jie Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Chuanli Ma
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Linghao Su
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Fengying Dong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Liangyu Gong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
21
|
Xu JM, Wang XC, Cheng JP. Supercapacitive Performances of Ternary CuCo 2S 4 Sulfides. ACS OMEGA 2020; 5:1305-1311. [PMID: 32010799 PMCID: PMC6990422 DOI: 10.1021/acsomega.9b03865] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/30/2019] [Indexed: 05/12/2023]
Abstract
Currently, ternary CuCo2S4 sulfides are intensively investigated as electrode materials for electrochemical capacitors due to their low cost, high conductivity, and synergistic effect. The research of CuCo2S4 materials for energy storage has gradually grown from 2016. The supercapacitive performances of CuCo2S4 electrodes for electrochemical capacitors are briefly reviewed in this work. The structure, morphology, and particle size of CuCo2S4 are related to the synthesis conditions and electrochemical performances. The thin films of CuCo2S4 nanostructures deposited on conductive substrates and their composites both show better properties than single CuCo2S4. CuCo2S4 and its composites reveal large potential for asymmetric capacitors, delivering high energy densities. However, there is still much new space remaining for future research. The possible development directions, challenges, and opportunities for CuCo2S4 materials are also discussed.
Collapse
Affiliation(s)
- Jun-Ming Xu
- College
of Electronic Information, Hangzhou Dianzi
University, Hangzhou 310018, China
| | - Xin-Chang Wang
- Key
Laboratory of Material Physics of Ministry of Education, School of
Physics and Microelectronics, Zhengzhou
University, Zhengzhou 450052, China
| | - Ji-Peng Cheng
- School
of Materials Science and Engineering, Zhejiang
University, Hangzhou 310027, China
| |
Collapse
|
22
|
Jia H, Cai Y, Wang Z, Zheng X, Li C, Liang H, Qi J, Cao J, Feng J, Fei W. Sea urchin-like CuCo2S4 microspheres with a controllable interior structure as advanced electrode materials for high-performance supercapacitors. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01269a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rational construction of a supercapacitor electrode structure can realize high specific surface area, good cycling stability and high capacitance.
Collapse
Affiliation(s)
- Henan Jia
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Yifei Cai
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Zhaoyue Wang
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Xiaohang Zheng
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Chun Li
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Haoyan Liang
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Junlei Qi
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Jian Cao
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Jicai Feng
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Weidong Fei
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| |
Collapse
|
23
|
Hao S, Li H, Zhao Z, Wang X. Pseudocapacitance‐Enhanced Anode of CoP@C Particles Embedded in Graphene Aerogel toward Ultralong Cycling Stability Sodium‐Ion Batteries. ChemElectroChem 2019. [DOI: 10.1002/celc.201901549] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Siyue Hao
- College of Materials Science and EngineeringTaiyuan University of Technology Taiyuan 030024 P.R. China
| | - Huijun Li
- College of Materials Science and EngineeringTaiyuan University of Technology Taiyuan 030024 P.R. China
| | - Zhenxin Zhao
- College of Materials Science and EngineeringTaiyuan University of Technology Taiyuan 030024 P.R. China
| | - Xiaomin Wang
- College of Materials Science and EngineeringTaiyuan University of Technology Taiyuan 030024 P.R. China
- Shanxi Key Laboratory of New Energy Materials and DevicesTaiyuan University of Technology Taiyuan 030024 P.R. China
| |
Collapse
|
24
|
Gao SQ, Zhang PP, Guo SH, Chen WQ, Li M, Liu F, Cheng JP. Synthesis of single-phase CuCo 2-xNi xS 4 for high-performance supercapacitors. J Colloid Interface Sci 2019; 555:284-293. [PMID: 31394315 DOI: 10.1016/j.jcis.2019.07.091] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022]
Abstract
Developing safe, efficient and environment-friendly energy storage systems continues to inspire researchers to synthesize new electrode materials. Doping or substituting host material by some guest elements has been regarded as an effective way to improve the performance of supercapacitors. In this work, single-phase CuCo2-xNixS4 materials were synthesized by a facile two-step hydrothermal method, where Co in CuCo2S4 was substituted by Ni. Cobalt could be easily substituted with Ni in a rational range to keep its constant phase. But, a high content of Ni resulted in a multi-phase composite. Among a series of CuCo2-xNixS4 materials with different Ni/Co mole ratios, CuCo1.25Ni0.75S4 material presented a significantly high specific capacitance (647 F g-1 or 272 C g-1 at 1 A g-1) and the best cycling stability (∼98% specific capacitance retention after 10,000 charge-discharge cycles), which was mainly due to the modified composition, specific single phase, higher electroconductivity, more electroactive sites and the synergistic effect between Ni and Co. Moreover, the assembled asymmetric capacitor using CuCo1.25Ni0.75S4 as a positive electrode and activated carbon as a negative electrode delivered a high energy density of 31.8 Wh kg-1 at the power density of 412.5 W kg-1. These results demonstrated that ternary metal sulfides of CuCo2-xNixS4 are promising electrode materials for high-performance supercapacitors.
Collapse
Affiliation(s)
- S Q Gao
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University, Hangzhou 310027, PR China
| | - P P Zhang
- Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - S H Guo
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University, Hangzhou 310027, PR China; Center for High Pressure Science and Technology Advanced Research (HPSTAR), 1690 Cailun Road, Shanghai 201203, PR China
| | - W Q Chen
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University, Hangzhou 310027, PR China
| | - M Li
- Research Institute of Narada Power Source Co., Ltd, Hangzhou 311305, PR China
| | - F Liu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University, Hangzhou 310027, PR China
| | - J P Cheng
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
25
|
Zhang Y, Wan Q, Yang N. Recent Advances of Porous Graphene: Synthesis, Functionalization, and Electrochemical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903780. [PMID: 31663294 DOI: 10.1002/smll.201903780] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Graphene is a 2D sheet of sp2 bonded carbon atoms and tends to aggregate together, due to the strong π-π stacking and van der Waals attraction between different layers. Its unique properties such as a high specific surface area and a fast mass transport rate are severely blocked. To address these issues, various kinds of 2D holey graphene and 3D porous graphene are either self-assembled from graphene layers or fabricated using graphene related materials such as graphene oxide and reduced graphene oxide. Porous graphene not only possesses unique pore structures, but also introduces abundant exposed edges and accelerates mass transfer. The properties and applications of these porous graphenes and their composites/hybrids have been extensively studied in recent years. Herein, recent progress and achievements in synthesis and functionalization of various 2D holey graphene and 3D porous graphene are reviewed. Of special interest, electrochemical applications of porous graphene and its hybrids in the fields of electrochemical sensing, electrocatalysis, and electrochemical energy storage, are highlighted. As the closing remarks, the challenges and opportunities for the future research of porous graphene and its composites are discussed and outlined.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Qijin Wan
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Nianjun Yang
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
- Institute of Materials Engineering, University of Siegen, Siegen, 57076, Germany
| |
Collapse
|
26
|
Deng Q, Tian Z, Wang X, Yang Z, Wu Y. Zn–Co Sulfide Microflowers Anchored on Three‐Dimensional Graphene: A High‐Capacitance and Long‐Cycle‐Life Electrode for Asymmetric Supercapacitors. Chemistry 2019; 26:650-658. [DOI: 10.1002/chem.201902859] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/27/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Qianwen Deng
- College of Materials Science and EngineeringTaiyuan University of Technology Taiyuan 030024 P.R. China
| | - Zhen Tian
- College of Materials Science and EngineeringTaiyuan University of Technology Taiyuan 030024 P.R. China
| | - Xiaomin Wang
- College of Materials Science and EngineeringTaiyuan University of Technology Taiyuan 030024 P.R. China
- Shanxi Key Laboratory of New Energy Materials and DevicesTaiyuan University of Technology Taiyuan 030024 P.R. China
| | - Zhewei Yang
- Shanxi Key Laboratory of New Energy Materials and DevicesTaiyuan University of Technology Taiyuan 030024 P.R. China
| | - Yucheng Wu
- College of Materials Science and EngineeringTaiyuan University of Technology Taiyuan 030024 P.R. China
- Shanxi Key Laboratory of New Energy Materials and DevicesTaiyuan University of Technology Taiyuan 030024 P.R. China
| |
Collapse
|
27
|
Zhou Q, Huang J, Li C, Lv Z, Zhu H, Hu G. Wrapping CuCo2S4 arrays on nickel foam with Ni2(CO3)(OH)2 nanosheets as a high-performance faradaic electrode. NEW J CHEM 2019. [DOI: 10.1039/c9nj00038k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ternary metal sulfides represent a new class of faradaic electrode material outperforming their oxide counterparts.
Collapse
Affiliation(s)
- Qingya Zhou
- Department of Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University
- Shanghai 200234
- China
| | - Jinping Huang
- Department of Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University
- Shanghai 200234
- China
| | - Cuiyu Li
- Department of Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University
- Shanghai 200234
- China
| | - Zhiwei Lv
- Department of Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University
- Shanghai 200234
- China
| | - Huilin Zhu
- Department of Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University
- Shanghai 200234
- China
| | - Gang Hu
- Department of Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University
- Shanghai 200234
- China
| |
Collapse
|