Zhao Q, Wang C, Wang H, Wang J. A mass-producible integrative structure Pt alloy oxygen reduction catalyst synthesized with atomically dispersive metal-organic framework precursors.
J Colloid Interface Sci 2021;
583:351-361. [PMID:
33011405 DOI:
10.1016/j.jcis.2020.09.078]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/03/2020] [Accepted: 09/20/2020] [Indexed: 10/23/2022]
Abstract
Oxygen reduction reaction (ORR) catalyst is one of the most significant influential factors for the application of proton exchange membrane fuel cells. This work introduces a mass-producible high-performance PtZn alloy integrative structure ORR catalyst, synthesized with the atomically dispersive metal-organic framework precursors. This PtZn catalyst displays excellent catalytic activity with the onset reduction potential of 1.0 VRHE@ 0.16 mA cm-2 (Reversible hydrogen electrode; RHE) and the half-wave potential of 0.934 VRHE for the ORR catalysis. The calculated specific activity and mass activity at 0.9 V are 9.44 A m-2 and 544 A gPt-1, respectively, which are 5.62 times and 5.77 times as high as the commercial Pt/C. The mass activity is remarkably higher than the target put forward by the Department of Energy (DOE; 440 A gPt-1). Furthermore, this PtZn catalyst also exhibits outstanding stability after the 10,000 potential cyclic degeneration test. The ORR current is much higher than Pt/C in the whole potential range not only before but also after the 10,000 potential cycles with identical Pt loading. This catalyst has a multifarious active-site catalytic structure with PtZn alloyed particles and atomically dispersive metal-N active sites on the N-doped graphited carbon matrix, exhibiting appealing ORR catalytic activity and sound stability for the application and scalable production of fuel cell catalysts.
Collapse