1
|
Khalaj M, Kamali M, Aminabhavi TM, Costa MEV, Dewil R, Appels L, Capela I. Sustainability insights into the synthesis of engineered nanomaterials - Problem formulation and considerations. ENVIRONMENTAL RESEARCH 2023; 220:115249. [PMID: 36632884 DOI: 10.1016/j.envres.2023.115249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Engineered nanomaterials (ENMs) have been introduced into the market for a wide range of applications. As per the literature review, the fabrication of new generations of ENMs is starting to comply with environmental, economic, and social criteria in addition to technical aspects to meet sustainability criteria. At this stage, identification of the appropriate criteria for the synthesis of ENMs is critical because the technologies already developed at the lab scales are being currently transferred to pilot and full scales. Hence, the development of scientific-based methodologies to identify, screen, and prioritize the involved criteria is highly necessary. In the present manuscript, a fuzzy-Delphi methodology is adopted to identify the main criteria and sub-criteria encompassing the sustainable fabrication of ENMs, and to explore the "degree of consensus" among the experts on the relative importance of the mentioned criteria. The "health and safety risks" respecting the equipment and the materials, solvent used, and availability of "green experts" were identified as the most critical criteria. Furthermore, although all the criteria were identified as being important, some criteria, such as "solvent" and "raw materials cost", raised a lower degree of consensus, indicating that various "degrees of uncertainties" still exist regarding the level of importance of the studied criteria.
Collapse
Affiliation(s)
- Mohammadreza Khalaj
- Department of Environment and Planning, Center for Environmental and Marine Studies, CESAM,University of Aveiro, 3810-193, Aveiro, Portugal; Department of Materials and Ceramics Engineering, Aveiro Institute of Materials, CICECO, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mohammadreza Kamali
- Center for Environmental and Marine Studies, CESAM, University of Aveiro, 3810-193, Aveiro, Portugal; KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, 580 031, India; Department of Chemistry, Karnatak University, Dharwad, 580 003, India; University Center for Research & Development (UCRO), Chandigarh University, Gharuan, Mohali, Punjab, 140 413, India.
| | - M Elisabete V Costa
- Department of Materials and Ceramics Engineering, Aveiro Institute of Materials, CICECO, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium
| | - Isabel Capela
- Department of Environment and Planning, Center for Environmental and Marine Studies, CESAM,University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
2
|
Sun R, Zhao Z, Su Z, Li T, Zhao J, Shang Y. Multi-interface MoS 2/Ni 3S 4/Mo 2S 3 composite as an efficient electrocatalyst for hydrogen evolution reaction over a wide pH range. Dalton Trans 2022; 51:6825-6831. [PMID: 35438099 DOI: 10.1039/d2dt00231k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The exploitation of cost-efficiently electrocatalysts for hydrogen evolution reaction (HER) over a wide pH range remains a challenge. Herein, we prepared a novel multi-interface MoS2/Ni3S4/Mo2S3 composite on carbon cloth (CC) that acts as an efficient electrocatalyst over a wide pH range through a facile one-pot strategy, where (NH4)4[NiH6Mo6O24]·5H2O (abbreviated to NiMo6) as a bimetallic precursor and Ni(NO3)2·6H2O as one of the raw materials and salt are used together with thiourea (TU) for converting them into the MoS2/Ni3S4/Mo2S3 load on CC (abbreviated as MoS2/Ni3S4/Mo2S3/CC). MoS2/Ni3S4/Mo2S3/CC-24 h shows a distinguished electrocatalytic performance towards HER with long-term stability in acid and alkaline media. It presents low overpotentials of 38 mV and 51 mV in 0.5 M H2SO4 and 1.0 M KOH at 10 mA cm-2, respectively. This work can deliver a new idea to fabricate cost-efficient and long-term durability HER electrocatalysts over a broad pH range.
Collapse
Affiliation(s)
- Rui Sun
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Zhifeng Zhao
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000, China.
| | - Zhanhua Su
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000, China.
| | - Tiansheng Li
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Jingxiang Zhao
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Yongchen Shang
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
4
|
Xia H, Qin H, Zhang Y, Yin H, Li Q, Pan F, Xia D, Li D, Xu H. Modulate 1O2 by passivate oxygen vacancy to boosting the photocatalytic performance of Z-scheme Mo2S3/BiOCl heterostructure. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118547] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|