1
|
Wang G, Jing Y, Yu Y, Wei S, Li X, Zhang S, Zuo C, Chen J, Zhou Y, Zhang J, Chen J, Wang R. A High-Performance Polyimide Composite Membrane with Flexible Polyphosphazene Derivatives for Vanadium Redox Flow Battery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64020-64030. [PMID: 39513755 DOI: 10.1021/acsami.4c13716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
A sulfonated polyimide, S-F-abSPI, with alkyl sulfonic acid side chains, and a polyphosphonitrile derivative, poly[4-methoxyphenoxy (4-fluorophenoxy) phosphazene] (PFMPP), were designed and synthesized. Composite modification of the S-F-abSPI membrane was carried out using PFMPP, resulting in the preparation of composite membranes with different composite ratios, which were then subjected to performance testing and characterization. Experimental results revealed a significant enhancement in the proton conductivity of the S-F-abSPI membrane, reaching 0.116 S cm-1, slightly higher than that of the N212 membrane. The S-F-abSPI/1% PFMPP composite membrane exhibited the optimal comprehensive performance, with a surface resistance as low as 0.54 Ω cm2, comparable to that of the N212 membrane. At a high current density of 200 mA cm-2 during charge-discharge, the composite membrane achieved a voltage efficiency (VE) of 83.12% and an energy efficiency (EE) of 81.95%. Cycling tests over 200 cycles demonstrated the composite membrane's excellent long-term cycling stability. The alkyl sulfonic acid side chains enhanced the proton conductivity of the membrane, while electrostatic potential distribution calculations indicated strong interactions between PFMPP and the base membrane, enhancing the membrane's mechanical strength, reducing vanadium ion permeability, and improving chemical stability and vanadium ion selectivity. This composite membrane holds promise for high-performance VRFB applications.
Collapse
Affiliation(s)
- Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yangtian Jing
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yan Yu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Shiguo Wei
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xuesong Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Shuwen Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | | | - Jijun Chen
- Sichuan Weilide Energy Co., Ltd., Leshan 614000, China
| | - Yufeng Zhou
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Obewhere OA, Acurio-Cerda K, Sutradhar S, Dike M, Keloth R, Dishari SK. Unravel-engineer-design: a three-pronged approach to advance ionomer performance at interfaces in proton exchange membrane fuel cells. Chem Commun (Camb) 2024; 60:13114-13142. [PMID: 39356467 PMCID: PMC11560688 DOI: 10.1039/d4cc03221g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Proton exchange membrane fuel cells (PEMFCs), which use hydrogen as fuel, present an eco-friendly alternative to internal combustion engines (ICEs) for powering low-to-heavy-duty vehicles and various devices. Despite their promise, PEMFCs must meet strict cost, performance, and durability standards to reach their full potential. A key challenge lies in optimizing the electrode, where a thin ionomer layer is responsible for proton conduction and binding catalyst particles to the electrode. Enhancing ion transport within these sub-μm thick films is critical to improving the oxygen reduction reaction (ORR) at the cathodes of PEMFCs. For the past 15 years, our research has targeted this limitation through a comprehensive "Unravel - Engineer - Design" approach. We first unraveled the behavior of ionomers, gaining deeper insights into both the average and distributed proton conduction properties within sub-μm thick films and at interfaces that mimic catalyst binder layers. Next, we engineered ionomer-substrate interfaces to gain control over interfacial makeup and boost proton conductivity, essential for PEMFC efficiency. Finally, we designed novel nature-derived or nature-inspired, fluorine-free ionomers to tackle the ion transport limitations seen in state-of-the-art ionomers under thin-film confinement. Some of these ionomers even pave the way to address cost and sustainability challenges in PEMFC materials. This feature article highlights our contributions and their importance in advancing PEMFCs and other sustainable energy conversion and storage technologies.
Collapse
Affiliation(s)
| | - Karen Acurio-Cerda
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Sourav Sutradhar
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Moses Dike
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Rajesh Keloth
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| | - Shudipto Konika Dishari
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
| |
Collapse
|
3
|
Chu J, Liu Q, Ji W, Li J, Ma X. Novel microporous sulfonated polyimide membranes with high energy efficiency under low ion exchange capacity for all vanadium flow battery. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Yao Y, Watanabe H, Hara M, Nagano S, Nagao Y. Lyotropic Liquid Crystalline Property and Organized Structure in High Proton-Conductive Sulfonated Semialicyclic Oligoimide Thin Films. ACS OMEGA 2023; 8:7470-7478. [PMID: 36872982 PMCID: PMC9979332 DOI: 10.1021/acsomega.2c06398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Fully aromatic sulfonated polyimides with a rigid backbone can form lamellar structures under humidified conditions, thereby facilitating the transmission of protons in ionomers. Herein, we synthesized a new sulfonated semialicyclic oligoimide composed of 1,2,3,4-cyclopentanetetracarboxylic dianhydride (CPDA) and 3,3'-bis-(sulfopropoxy)-4,4'-diaminobiphenyl to investigate the influence of molecular organized structure and proton conductivity with lower molecular weight. The weight-average molecular weight (M w) determined by gel permeation chromatography was 9300. Humidity-controlled grazing incidence X-ray scattering revealed that one scattering was observed in the out-of-plane direction and showed that the scattering position shifted to a lower angle as the humidity increased. A loosely packed lamellar structure was formed by lyotropic liquid crystalline properties. Although the ch-pack aggregation of the present oligomer was reduced by substitution to the semialicyclic CPDA from the aromatic backbone, the formation of a distinct organized structure in the oligomeric form was observed because of the linear conformational backbone. This report is the first-time observation of the lamellar structure in such a low-molecular-weight oligoimide thin film. The thin film exhibited a high conductivity of 0.2 (±0.01) S cm-1 under 298 K and 95% relative humidity, which is the highest value compared to the other reported sulfonated polyimide thin films with comparable molecular weight.
Collapse
Affiliation(s)
- Yuze Yao
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Hayato Watanabe
- Graduate
School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Mitsuo Hara
- Graduate
School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Shusaku Nagano
- Department
of Chemistry, College of Science, Rikkyo
University, 3-34-1 Nishi-ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Yuki Nagao
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
5
|
He Z, Wang G, Wei S, Li G, Zhang J, Chen J, Wang R. A novel fluorinated acid-base sulfonated polyimide membrane with sulfoalkyl side-chain for vanadium redox flow battery. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Yuan C, Wang Y. Synthesis and characterization of a novel sulfonated poly (aryl ether ketone sulfone) containing rigid fluorene group for DMFCs applications. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04774-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Yuan C, Wang Y. Synthesis and characterization of a novel sulfonated poly (aryl ether ketone sulfone) semi-crosslinked membrane with high proton selectivity through click reaction for direct methanol fuel cells. HIGH PERFORM POLYM 2020. [DOI: 10.1177/0954008320960216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A novel sulfonated polyvinyl alcohol containing alkynyl groups (SPVA-C≡C) and a new sulfonated poly (aryl ether ketone sulfone) (SPAEKS) are synthesized. Semi-crosslinked membrane (semi-crosslink-SPAEKS-x) was prepared by click reaction of mercapto-alkynes between 1, 5-pentanedithiol and SPVA-C≡C. The chemical structures of SPAEKS, SPVA-C≡C and semi-crosslink-SPAEKS-x are confirmed by 1H-NMR and FTIR spectra. The semi-crosslink-SPAEKS-x membranes show good mechanical properties, excellent dimensional stability and oxidative stability. The proton conductivity of SPAEKS and semi-crosslink-SPAEKS-x membranes is in the range of 25.6–52.5 mS/cm. The methanol permeability of semi-crosslink-SPAEKS-x membranes is in the range of 1.4–1.7 × 10−7 cm−2 s−1, which is much lower than that of Nafion 117 membrane (18.3 × 10−7 cm−2 s−1). Especially, the proton selectivity of semi-crosslink-SPAEKS-15 membrane (24.3 × 104 S s cm−3) is above seven times higher than that of Nafion 117 membrane (3.4 × 104 S s cm−3).
Collapse
Affiliation(s)
- Chengyun Yuan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
| | - Yinghan Wang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
8
|
Yuan C, Wang Y. The preparation of novel sulfonated poly(aryl ether ketone sulfone)/TiO2 composite membranes with low methanol permeability for direct methanol fuel cells. HIGH PERFORM POLYM 2020. [DOI: 10.1177/0954008320958044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A sulfonated poly(aryl ether ketone sulfone) (SPAEKS) with locally dense sulfonic acid groups is synthesized and different amounts of TiO2 is doped into SPAEKS matrix to prepare composite membranes (SPAEKS/TiO2-x). SEM shows that TiO2 in the composite membranes has good dispersibility when TiO2 content is not higher than 3%. The composite membranes show good mechanical properties, dimensional stability and oxidative stability. The proton conductivity of composite membranes is near to that of Nafion 117 membrane and methanol permeability of composite membranes is much lower than that of Nafion 117 membrane. Therefore, the proton selectivity of composite membranes is higher than that of Nafion 117 membrane. In particular, proton selectivity of SPAEKS/TiO2-3% (12.8 × 104 S s cm−3) is four times higher than that of Nafion 117 membrane (3.2 × 104 S s cm−3).
Collapse
Affiliation(s)
- Chengyun Yuan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
| | - Yinghan Wang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|