1
|
Enaiet Allah A, Mohamed F, Ghanem MA, Ahmed AM. Chemical synthesis and super capacitance performance of novel CuO@Cu 4O 3/rGO/PANI nanocomposite electrode. RSC Adv 2024; 14:13628-13639. [PMID: 38665496 PMCID: PMC11044122 DOI: 10.1039/d4ra00065j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Copper oxide-based nanocomposites are promising electrode materials for high-performance supercapacitors due to their unique properties that aid electrolyte access and ion diffusion to the electrode surface. Herein, a facile and low-cost synthesis in situ strategy based on co-precipitation and incorporation processes of reduced graphene oxide (rGO), followed by in situ oxidative polymerization of aniline monomer has been reported. CuO@Cu4O3/rGO/PANI nanocomposite revealed the good distribution of CuO@Cu4O3 and rGO within the polymer matrix which allows improved electron transport and ion diffusion process. Galvanostatic charge-discharge (GCD) results displayed a higher specific capacitance value of 508 F g-1 for CuO@Cu4O3/rGO/PANI at 1.0 A g-1 in comparison to the pure CuO@Cu4O3 278 F g-1. CuO@Cu4O3/rGO/PANI displays an energy density of 23.95 W h kg-1 and power density of 374 W kg-1 at the current density of 1 A g-1 which is 1.8 times higher than that of CuO@Cu4O3 (13.125 W h kg-1) at the same current density. The retention of the electrode was 93% of its initial capacitance up to 5000 cycles at a scan rate of 100 mV s-1. The higher capacitance of the CuO@Cu4O3/rGO/PANI electrode was credited to the formation of a fibrous network structure and rapid ion diffusion paths through the nanocomposite matrix that resulted in enhanced surface-dependent electrochemical properties.
Collapse
Affiliation(s)
- Abeer Enaiet Allah
- Department of Chemistry, Faculty of Science, Beni-Suef University 62514 Beni-Suef City Egypt
- Materials Science Lab, Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| | - Fatma Mohamed
- Department of Chemistry, Faculty of Science, Beni-Suef University 62514 Beni-Suef City Egypt
- Materials Science Lab, Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| | - Mohamed A Ghanem
- Chemistry Department, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Ashour M Ahmed
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11623 Saudi Arabia
| |
Collapse
|
2
|
Barakat NAM, Sayed YT, Irfan OM, Abdelaty MM. Synthesis of TiO2-incorporated activated carbon as an effective Ion electrosorption material. PLoS One 2023; 18:e0282869. [PMID: 36952561 PMCID: PMC10035829 DOI: 10.1371/journal.pone.0282869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/26/2023] [Indexed: 03/25/2023] Open
Abstract
Efficient, chemically stable and cheap materials are highly required as electrodes in the ions-electrosorption-based technologies such as supercapacitors and capacitive deionization desalination. Herein, facile preparation of titanium oxide-incorporated activated carbon using cheap precursors is introduced for this regard. The proposed material was synthesized using the solubility power of the subcritical water to partially dissolve titanium oxide particles to be adsorbable on the surface of the activated carbon. Typically, an aqueous suspension of commercial TiO2 particles (P25) and activated carbon was autoclaved at 180°C for 10 h. The physiochemical characterizations indicated high and uniform distribution of the inorganic material on the surface of the activated carbon. The ionic electrosorption capacity was highly improved as the specific capacitance increased from 76 to 515 F/g for the pristine and modified activated carbon, respectively at 5 mV/s in 0.5 M sodium chloride solution. However, the weight content of titanium oxide has to be adjusted; 0.01% is the optimum value. Overall, the study introduces novel and simple one-pot procedure to synthesis powerful titanium oxide-based functional materials from cheap solid titanium precursor without utilization of additional chemicals.
Collapse
Affiliation(s)
- Nasser A M Barakat
- Faculty of Engineering, Chemical Engineering Department, Minia University, El-Minia, Egypt
| | - Yasmin T Sayed
- Faculty of Engineering, Chemical Engineering Department, Minia University, El-Minia, Egypt
| | - Osama M Irfan
- Department of Mechanical Engineering, College of Engineering, Qassim University, Buraydah, Saudi Arabia
| | - Marawa M Abdelaty
- Faculty of Engineering, Chemical Engineering Department, Minia University, El-Minia, Egypt
| |
Collapse
|
3
|
Pallavolu MR, Krishna KG, Nagaraju G, Babu PS, Sambasivam S, Sreedhar A. Rational design of Cu-doped Co3O4@carbon nanocomposite and agriculture crop-waste derived activated carbon for high-performance hybrid supercapacitors. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Yesuraj J, Lee HO, Pandiyan MK, Jayavelu J, Bhagavathiachari M, Kim K. Bio-engineered hexagon-shaped Co3O4 nanoplates on deoxyribonucleic acid (DNA) scaffold: An efficient electrode material for an asymmetric supercapacitor and electrocatalysis application. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Facile synthesis of Pr-doped Co3O4 nanoflakes on the nickel-foam for high performance supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
6
|
Li X, Li P, Wei F, Wang X, Han W, Yue J. Effect of oxygen vacancies on the electronic structure and electrochemical performance of MnMoO 4: computational simulation and experimental verification. NEW J CHEM 2022. [DOI: 10.1039/d1nj05085k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Porous nanopetals of MnMoO4 with oxygen vacancies (MnMoO4–OV) were synthesized and deliver preferable energy storage performance.
Collapse
Affiliation(s)
- Xiaoli Li
- School of Materials Science and Engineering, Hebei University of Engineering, Handan, 056027, China
| | - Pengxi Li
- Purification Equipment Research Institute of CSSC, Handan, 056027, China
| | - Fangfang Wei
- School of Materials Science and Engineering, Hebei University of Engineering, Handan, 056027, China
| | | | - Weiwen Han
- School of Materials Science and Engineering, Hebei University of Engineering, Handan, 056027, China
| | - Jiang Yue
- School of Materials Science and Engineering, Hebei University of Engineering, Handan, 056027, China
| |
Collapse
|
7
|
Li P, Wang J, Li L, Song S, Yuan X, Jiao W, Hao Z, Li X. Design of a ZnMoO 4 porous nanosheet with oxygen vacancies as a better performance electrode material for supercapacitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj01219c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ZnMoO4 porous nanosheet with oxygen vacancies (ZnMoO4-OV) was synthesized which delivers a preferable energy storage performance.
Collapse
Affiliation(s)
- Pengxi Li
- Purification Equipment Research Institute of CSSC
- Handan
- China
- School of Chemistry and Chemical Engineering
- Southeast University
| | - Jiepeng Wang
- Purification Equipment Research Institute of CSSC
- Handan
- China
- School of Materials Science and Engineering
- Shanghai University
| | - Liming Li
- Purification Equipment Research Institute of CSSC
- Handan
- China
| | - Shili Song
- Purification Equipment Research Institute of CSSC
- Handan
- China
| | - Xianming Yuan
- Purification Equipment Research Institute of CSSC
- Handan
- China
| | - Wenqiang Jiao
- Purification Equipment Research Institute of CSSC
- Handan
- China
| | - Zhen Hao
- Purification Equipment Research Institute of CSSC
- Handan
- China
| | - Xiaoli Li
- School of Materials Science and Engineering
- Hebei University of Engineering
- Handan
- China
| |
Collapse
|
8
|
Lai C, Wang S, Cheng L, Wang Y, Fu L, Sun Y, Lin B. High-performance asymmetric supercapacitors of advanced double ion-buffering reservoirs based on battery-type hierarchical flower-like Co3O4-GC microspheres and 3D holey graphene aerogels. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137334] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Zn-Co phosphide porous nanosheets derived from metal-organic-frameworks as battery-type positive electrodes for high-performance alkaline supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137063] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Influence of synthesized functionalized reduced graphene oxide aerogel with 4,4′-methylenedianiline as reducing agent on electrochemical and pseudocapacitance performance of poly orthoaminophenol electroactive film. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136736] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
An Easy and Ecological Method of Obtaining Hydrated and Non-Crystalline WO 3-x for Application in Supercapacitors. MATERIALS 2020; 13:ma13081925. [PMID: 32325884 PMCID: PMC7215928 DOI: 10.3390/ma13081925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 11/16/2022]
Abstract
In this work, we report the synthesis of hydrated and non-crystalline WO3 flakes (WO3−x) via an environmentally friendly and facile water-based strategy. This method is described, in the literature, as exfoliation, however, based on the results obtained, we cannot say unequivocally that we have obtained an exfoliated material. Nevertheless, the proposed modification procedure clearly affects the morphology of WO3 and leads to loss of crystallinity of the material. TEM techniques confirmed that the process leads to the formation of WO3 flakes of a few nanometers in thickness. X-ray diffractograms affirmed the poor crystallinity of the flakes, while spectroscopic methods showed that the materials after exfoliation were abundant with the surface groups. The thin film of hydrated and non-crystalline WO3 exhibits a seven times higher specific capacitance (Cs) in an aqueous electrolyte than bulk WO3 and shows an outstanding long-term cycling stability with a capacitance retention of 92% after 1000 chronopotentiometric cycles in the three-electrode system. In the two-electrode system, hydrated WO3−x shows a Cs of 122 F g−1 at a current density of 0.5 A g−1. The developed supercapacitor shows an energy density of 60 Whkg−1 and power density of 803 Wkg−1 with a decrease of 16% in Csp after 10,000 cycles. On the other hand, WO3−x is characterized by inferior properties as an anode material in lithium-ion batteries compared to bulk WO3. Lithium ions intercalate into a WO3 crystal framework and occupy trigonal cavity sites during the electrochemical polarization. If there is no regular layer structure, as in the case of the hydrated and non-crystalline WO3, the insertion of lithium ions between WO3 layers is not possible. Thus, in the case of a non-aqueous electrolyte, the specific capacity of the hydrated and non-crystalline WO3 electrode material is much lower in comparison with the specific capacity of the bulk WO3-based anode material.
Collapse
|
12
|
Balasubramaniam S, Mohanty A, Balasingam SK, Kim SJ, Ramadoss A. Comprehensive Insight into the Mechanism, Material Selection and Performance Evaluation of Supercapatteries. NANO-MICRO LETTERS 2020; 12:85. [PMID: 34138304 PMCID: PMC7770895 DOI: 10.1007/s40820-020-0413-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/13/2020] [Indexed: 05/21/2023]
Abstract
Electrochemical energy storage devices (EESs) play a crucial role for the construction of sustainable energy storage system from the point of generation to the end user due to the intermittent nature of renewable sources. Additionally, to meet the demand for next-generation electronic applications, optimizing the energy and power densities of EESs with long cycle life is the crucial factor. Great efforts have been devoted towards the search for new materials, to augment the overall performance of the EESs. Although there are a lot of ongoing researches in this field, the performance does not meet up to the level of commercialization. A further understanding of the charge storage mechanism and development of new electrode materials are highly required. The present review explains the overview of recent progress in supercapattery devices with reference to their various aspects. The different charge storage mechanisms and the multiple factors involved in the performance of the supercapattery are described in detail. Moreover, recent advancements in this supercapattery research and its electrochemical performances are reviewed. Finally, the challenges and possible future developments in this field are summarized.
Collapse
Affiliation(s)
- Saravanakumar Balasubramaniam
- School for Advanced Research in Polymers, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Plastics Engineering and Technology, Bhubaneswar, 751024, India
| | - Ankita Mohanty
- School for Advanced Research in Polymers, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Plastics Engineering and Technology, Bhubaneswar, 751024, India
| | - Suresh Kannan Balasingam
- Department of Materials Science and Engineering, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Sang Jae Kim
- Nanomaterials and Systems Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea
| | - Ananthakumar Ramadoss
- School for Advanced Research in Polymers, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Plastics Engineering and Technology, Bhubaneswar, 751024, India.
| |
Collapse
|
13
|
Efficient aqueous processing and utilization of high-quality graphene for high performance supercapacitor electrode. J Colloid Interface Sci 2020; 561:668-677. [DOI: 10.1016/j.jcis.2019.11.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 01/21/2023]
|
14
|
Le K, Gao M, Xu D, Wang Z, Wang G, Lu G, Liu W, Wang F, Liu J. In situ transformation of ZIF-67 into hollow Co 2V 2O 7 nanocages on graphene as a high-performance cathode for aqueous asymmetric supercapacitors. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00730g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Co2V2O7/G composite with MOF-derived hollow Co2V2O7 nanocages uniformly distributed on graphene exhibits excellent electrochemical performance for supercapacitors.
Collapse
Affiliation(s)
- Kai Le
- State Key Laboratory of Crystal Materials
- Institute of Crystal Materials
- Shandong University
- Shandong 250100
- China
| | - Mengjiao Gao
- School of Materials Science and Engineering
- Shandong University
- Jinan
- China
| | - Dongmei Xu
- State Key Laboratory of Crystal Materials
- Institute of Crystal Materials
- Shandong University
- Shandong 250100
- China
| | - Zhou Wang
- School of Materials Science and Engineering
- Shandong University
- Jinan
- China
| | - Guanwen Wang
- School of Materials Science and Engineering
- Shandong University
- Jinan
- China
| | - Guixia Lu
- School of Civil Engineering
- Qingdao University of Technology
- Qingdao
- China
| | - Wei Liu
- State Key Laboratory of Crystal Materials
- Institute of Crystal Materials
- Shandong University
- Shandong 250100
- China
| | - Fenglong Wang
- School of Materials Science and Engineering
- Shandong University
- Jinan
- China
| | - Jiurong Liu
- School of Materials Science and Engineering
- Shandong University
- Jinan
- China
| |
Collapse
|
15
|
Sun M, Li Z, Li H, Wu Z, Shen W, Fu YQ. Mesoporous Zr-doped CeO2 nanostructures as superior supercapacitor electrode with significantly enhanced specific capacity and excellent cycling stability. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135366] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
|
17
|
|
18
|
Malaie K, Scholz F. Realizing alkaline all-pseudocapacitive supercapacitors based on highly stable nanospinel oxide coatings. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|