1
|
Hu L, Wang J, Wang H, Zhang Y, Han J. Gold-Promoted Electrodeposition of Metal Sulfides on Silicon Nanowire Photocathodes To Enhance Solar-Driven Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15449-15457. [PMID: 36921238 DOI: 10.1021/acsami.2c22423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Constructing composite structures is the key to breaking the dilemma of slow reaction kinetics and easy oxidation on the surface of lightly doped p-type silicon nanowire (SiNW) array photocathodes. Electrodeposition is a convenient and fast technique to prepare composite photocathodes. However, the low conductivity of SiNWs limits the application of the electrodeposition technique in constructing composite structures. Herein, SiNWs were loaded with Au nanoparticles by chemical deposition to decrease the interfacial charge transfer resistance and increase active sites for the electrodeposition. Subsequently, co-catalysts CoS, MoS2, and Ni3S2 with excellent hydrogen evolution activity were successfully composited by electrodeposition on the surface of SiNWs/Au. The obtained core-shell structures exhibited excellent photoelectrochemical hydrogen evolution activity, which was contributed by the plasma property of Au and the abundant hydrogen evolution active sites of the co-catalysts. This work provided a simple and efficient solution for the preparation of lightly doped SiNW-based composite structures by electrodeposition.
Collapse
Affiliation(s)
- Lang Hu
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Jiamin Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Honggui Wang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Ya Zhang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Xia C, Li Y, Je M, Kim J, Cho SM, Choi CH, Choi H, Kim TH, Kim JK. Nanocrystalline Iron Pyrophosphate-Regulated Amorphous Phosphate Overlayer for Enhancing Solar Water Oxidation. NANO-MICRO LETTERS 2022; 14:209. [PMID: 36315297 PMCID: PMC9622969 DOI: 10.1007/s40820-022-00955-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
A rational regulation of the solar water splitting reaction pathway by adjusting the surface composition and phase structure of catalysts is a substantial approach to ameliorate the sluggish reaction kinetics and improve the energy conversion efficiency. In this study, we demonstrate a nanocrystalline iron pyrophosphate (Fe4(P2O7)3, FePy)-regulated hybrid overlayer with amorphous iron phosphate (FePO4, FePi) on the surface of metal oxide nanostructure with boosted photoelectrochemical (PEC) water oxidation. By manipulating the facile electrochemical surface treatment followed by the phosphating process, nanocrystalline FePy is localized in the FePi amorphous overlayer to form a heterogeneous hybrid structure. The FePy-regulated hybrid overlayer (FePy@FePi) results in significantly enhanced PEC performance with long-term durability. Compared with the homogeneous FePi amorphous overlayer, FePy@FePi can improve the charge transfer efficiency more significantly, from 60% of FePi to 79% of FePy@FePi. Our density-functional theory calculations reveal that the coexistence of FePi and FePy phases on the surface of metal oxide results in much better oxygen evolution reaction kinetics, where the FePi was found to have a typical down-hill reaction for the conversion from OH* to O2, while FePy has a low free energy for the formation of OH*.
Collapse
Affiliation(s)
- Chengkai Xia
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Yuankai Li
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Minyeong Je
- Theoretical Materials and Chemistry Group, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
| | - Jaekyum Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Sung Min Cho
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Chang Hyuck Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Heechae Choi
- Theoretical Materials and Chemistry Group, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
| | - Tae-Hoon Kim
- Department of Materials Science and Engineering, Engineering Research Center, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jung Kyu Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
| |
Collapse
|
3
|
Mei Y, Cong Y, Huang S, Qian J, Ye J, Li TT. MOF-on-MOF Strategy to Construct a Nitrogen-Doped Carbon-Incorporated CoP@Fe-CoP Core-Shelled Heterostructure for High-Performance Overall Water Splitting. Inorg Chem 2021; 61:1159-1168. [PMID: 34962378 DOI: 10.1021/acs.inorgchem.1c03498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The design and preparation of efficient and low-cost catalysts for water electrolysis are crucial and highly desirable to produce eco-friendly and sustainable hydrogen fuel. Herein, we prepared nitrogen-doped carbon-incorporated CoP@Fe-CoP core-shelled nanorod arrays grown on Ni foam (CoP@Fe-CoP/NC/NF) through phosphorization of ZIF-67@Co-Fe Prussian blue analogue (ZIF-67@CoFe-PBA). The hierarchical nanorod arrays combined with the core-shelled structure offer favorable mass/electron transport capacity and maximize the active sites, thus enhancing the electrochemically active surface area. The synergistic effect of the bimetallic components and the nitrogen-doped carbon matrix endow the composite with an optimized electronic structure. Benefiting from the above superiorities of morphological and chemical compositions, this self-supported CoP@Fe-CoP/NC/NF heterostructure can drive alkaline hydrogen evolution reaction and oxygen evolution reaction with overpotentials of 97 and 270 mV to yield 100 mA cm-2, respectively. The two-electrode alkaline electrolyzer constructed by this heterostructure shows a low cell voltage of 1.58 V to yield 10 mA cm-2, superior to the precious-metal-based electrocatalyst apparatus (IrO2∥Pt/C). This study offers a feasible and facile approach to develop efficient electrocatalysts for water electrolysis, which applies to other electrochemical energy conversion and storage applications.
Collapse
Affiliation(s)
- Yan Mei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yikang Cong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Shengsheng Huang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jinjie Qian
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
| | - Jun Ye
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ting-Ting Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.,Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo 315211, China
| |
Collapse
|
4
|
Rasouli H, Hosseini MG, Yardani sefidi P, Kinayyigit S. Superior overall water splitting performance in polypyrrole photoelectrode by coupling
NrGO
and modifying electropolymerization substrate. J Appl Polym Sci 2021. [DOI: 10.1002/app.50507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Haleh Rasouli
- Electrochemistry Research Laboratory, Department of Physical Chemistry, Chemistry Faculty University of Tabriz Tabriz Iran
| | - Mir Ghasem Hosseini
- Electrochemistry Research Laboratory, Department of Physical Chemistry, Chemistry Faculty University of Tabriz Tabriz Iran
- Engineering Faculty, Department of Materials Science and Nanotechnology Near East University Mersin Turkey
| | - Pariya Yardani sefidi
- Electrochemistry Research Laboratory, Department of Physical Chemistry, Chemistry Faculty University of Tabriz Tabriz Iran
| | - Solen Kinayyigit
- Laboratory of Nanocatalysis and Clean Energy Technologies Institute of Nanotechnology Kocaeli Turkey
| |
Collapse
|
5
|
Zhong X, Huang K, Zhang Y, Wang Y, Feng S. Constructed Interfacial Oxygen-Bridge Chemical Bonding in Core-Shell Transition Metal Phosphides/Carbon Hybrid Boosting Oxygen Evolution Reaction. CHEMSUSCHEM 2021; 14:2188-2197. [PMID: 33650205 DOI: 10.1002/cssc.202100129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/19/2021] [Indexed: 06/12/2023]
Abstract
A designed structure which CoP nanoparticles (NPs) ingeniously connected with graphene-like carbon layer via in-situ generated interfacial oxygen-bridge chemical bonding was achieved by a mild phosphorization treatment. The results proved that the presence of phosphorus vacancies is a crucial factor enabling formation of Co-O-C bonds. The direct coupling of edge Co of CoP with the oxygen from functional groups on the carbon layer was proposed. As a catalyst for electrocatalytic water splitting, the manufactured Fe2 O3 @C@CoP core-shell structure manifested a low overpotential of 230 mV, a low Tafel slope of 55 mV dec-1 , and long-term stability. Density functional theory calculations verified that the Co-O-C bond played a critical role in decreasing the thermodynamic energy barrier of reaction rate-determining step for the oxygen evolution reaction (OER). This synthetic route might be extended to construct metal-O-C bonds in other transition metal phosphides (or selenides, sulfides)/carbon composites for highly efficient OER catalysts.
Collapse
Affiliation(s)
- Xia Zhong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
6
|
Xiao J, Peng L, Gao L, Zhong J, Huang Z, Yuan E, Srinivasapriyan V, Zhou SF, Zhan G. Improving light absorption and photoelectrochemical performance of thin-film photoelectrode with a reflective substrate. RSC Adv 2021; 11:16600-16607. [PMID: 35479178 PMCID: PMC9031256 DOI: 10.1039/d1ra02826j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/29/2021] [Indexed: 11/21/2022] Open
Abstract
The charge separation/transport efficiency is relatively high in thin-film hematite photoanodes in which the distance for charge transport is short, but simultaneously the high loss of light absorption due to transmission is confronted. To increase light absorption in thin-film Fe2O3:Ti, commercial substrates such as Cu foil, Ag foil, and a mirror are adopted acting as back-reflectors and individually integrated with the Fe2O3:Ti electrode. The promotion effect of the commercial back-reflectors on the light absorption efficiency and photoelectrochemical (PEC) performance of the hydrothermally prepared Fe2O3:Ti electrodes with a variety of film thicknesses is investigated. As a result, Ag foil and the mirror show favorable and equal efficacy while the promoting effect of Cu foil is limited. In addition, the photocurrent increment achieved by the Ag back-reflector decreases linearly along with the logarithmic of the film thickness and the optimized film thickness of the Fe2O3:Ti electrode is decreased from 520 to 290 nm. The high durability of Ag foil in the alkaline electrolyte during solar light irradiation is demonstrated. Furthermore, the reflective substrate also shows a promotion effect on the BiVO4 photoanode and CuBi2O4 photocathode, as well as the unbiased photocurrent from a tandem cell constituted by TiO2 and CuBi2O4. The charge separation/transport efficiency is relatively high in thin-film hematite photoanodes in which the distance for charge transport is short, but simultaneously the high loss of light absorption due to transmission is confronted.![]()
Collapse
Affiliation(s)
- Jingran Xiao
- College of Chemical Engineering, Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Lingling Peng
- College of Chemical Engineering, Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Le Gao
- College of Chemical Engineering, Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Jun Zhong
- College of Chemical Engineering, Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Zhongliang Huang
- College of Chemical Engineering, Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Enxian Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou Jiangsu 225002 P. R. China
| | - Vijayan Srinivasapriyan
- Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Beijing 100190 China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Guowu Zhan
- College of Chemical Engineering, Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| |
Collapse
|
7
|
A coral-like hematite photoanode on a macroporous SnO2: Sb substrate for enhanced photoelectrochemical water oxidation. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Zhang X, Fan X, Wang X, Deng T, Liu E, Chen B. Facile fabrication of Co2P/TiO2 nanotube arrays photoelectrode for efficient methylene blue degradation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Bedin KC, Muche DNF, Melo MA, Freitas ALM, Gonçalves RV, Souza FL. Role of Cocatalysts on Hematite Photoanodes in Photoelectrocatalytic Water Splitting: Challenges and Future Perspectives. ChemCatChem 2020. [DOI: 10.1002/cctc.202000143] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Karen C. Bedin
- Laboratory of Alternative Energy and Nanomaterials – LEANFederal University of ABC (UFABC) Avenida dos Estados 5001 09210-580 Santo André, SP Brazil
| | - Dereck N. F. Muche
- Laboratory of Alternative Energy and Nanomaterials – LEANFederal University of ABC (UFABC) Avenida dos Estados 5001 09210-580 Santo André, SP Brazil
| | - Mauricio A. Melo
- São Carlos Institute of Physics – IFSCUniversity of São Paulo (USP) Avenida Trabalhador São Carlense 400 PO Box 369 13560-970 São Carlos, SP Brazil
| | - Andre L. M. Freitas
- Laboratory of Alternative Energy and Nanomaterials – LEANFederal University of ABC (UFABC) Avenida dos Estados 5001 09210-580 Santo André, SP Brazil
| | - Renato V. Gonçalves
- São Carlos Institute of Physics – IFSCUniversity of São Paulo (USP) Avenida Trabalhador São Carlense 400 PO Box 369 13560-970 São Carlos, SP Brazil
| | - Flavio L. Souza
- Laboratory of Alternative Energy and Nanomaterials – LEANFederal University of ABC (UFABC) Avenida dos Estados 5001 09210-580 Santo André, SP Brazil
| |
Collapse
|
10
|
Kinetic analysis of the synergistic effect of NaBH4 treatment and Co-Pi coating on Fe2O3 photoanodes for photoelectrochemical water oxidation. J Catal 2020. [DOI: 10.1016/j.jcat.2019.10.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|