1
|
Stanley RS, Pringle NE, King D, Cox SL, Han H, Bhowmik PK, Paxton WF. pH Dependence of Dihydroxyacetone Oxidation by Electrocatalytic Viologen Self-Assembled Monolayers on Gold Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24781-24794. [PMID: 39540897 DOI: 10.1021/acs.langmuir.4c02379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Carbohydrate fuel cells garner much research interest as the world's focus shifts from fossil fuels to renewable energy. Many catalyst options are available for carbohydrate fuel cell development, including enzymes and microbes, various metal-based catalysts, and natural or synthetic mediators. Research challenges include low power output, system fouling and poisoning, inefficient electron release, and complex mechanisms, with multiple pathways leading to low product selectivity. Here, we further investigate a novel approach to catalyze carbohydrate oxidation using Au electrodes with viologen self-assembled monolayers (SAMs). SAM-mediated fuel cells have the potential to address the challenges of other catalyst systems by protecting the electrode surface and controlling the local concentration and structure to increase current generation. The effects of increasing pH on dihydroxyacetone (DHA) oxidation by three viologen SAMs on Au electrodes are presented. Current and power generated during DHA oxidation at varying pH were measured and compared to those of bare Au performance. Two of the SAMs produced more current and power than bare Au at elevated pH. The SAM system produced more current and peak power per molecule than both dilute and concentrated homogeneous viologen systems in the same cell setup. These results demonstrate the benefits and limitations of electrodes modified with redox-active groups for the production of electricity from simple sugars and other carbohydrate sources. These results are encouraging for the development of new strategies for electrical power generation from renewable resources.
Collapse
Affiliation(s)
- Rebekah S Stanley
- Department of Chemistry and Biochemistry C100 BNSN, Brigham Young University, Provo, Utah 84602, United States
| | - Nathan E Pringle
- Department of Chemistry and Biochemistry C100 BNSN, Brigham Young University, Provo, Utah 84602, United States
| | - David King
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, Nevada 89154, United States
| | - Seonghyeok L Cox
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, Nevada 89154, United States
| | - Haesook Han
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, Nevada 89154, United States
| | - Pradip K Bhowmik
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, Nevada 89154, United States
| | - Walter F Paxton
- Department of Chemistry and Biochemistry C100 BNSN, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
2
|
Huffman BL, Bredar ARC, Dempsey JL. Origins of non-ideal behaviour in voltammetric analysis of redox-active monolayers. Nat Rev Chem 2024:10.1038/s41570-024-00629-8. [PMID: 39039210 DOI: 10.1038/s41570-024-00629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 07/24/2024]
Abstract
Disorder in redox-active monolayers convolutes electrochemical characterization. This disorder can come from pinhole defects, loose packing, heterogeneous distribution of redox-active headgroups, and lateral interactions between immobilized redox-active molecules. Identifying the source of non-ideal behaviour in cyclic voltammograms can be challenging as different types of disorder often cause similar non-ideal cyclic voltammetry behaviour such as peak broadening, large peak-to-peak separation, peak asymmetry and multiple peaks for single redox processes. This Review provides an overview of ideal voltammetric behaviour for redox-active monolayers, common manifestations of disorder on voltammetric responses, common experimental parameters that can be varied to interrogate sources of disorder, and finally, examples of different types of disorder and how they impact electrochemical responses.
Collapse
Affiliation(s)
- Brittany L Huffman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandria R C Bredar
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jillian L Dempsey
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Sevim S, Sanchis-Gual R, Franco C, Aragonès AC, Darwish N, Kim D, Picca RA, Nelson BJ, Ruiz E, Pané S, Díez-Pérez I, Puigmartí-Luis J. Electrostatic catalysis of a click reaction in a microfluidic cell. Nat Commun 2024; 15:790. [PMID: 38278792 PMCID: PMC10817948 DOI: 10.1038/s41467-024-44716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/02/2024] [Indexed: 01/28/2024] Open
Abstract
Electric fields have been highlighted as a smart reagent in nature's enzymatic machinery, as they can directly trigger or accelerate chemical processes with stereo- and regio-specificity. In enzymatic catalysis, controlled mass transport of chemical species is also key in facilitating the availability of reactants in the active reaction site. However, recent progress in developing a clean catalysis that profits from oriented electric fields is limited to theoretical and experimental studies at the single molecule level, where both the control over mass transport and scalability cannot be tested. Here, we quantify the electrostatic catalysis of a prototypical Huisgen cycloaddition in a large-area electrode surface and directly compare its performance to the conventional Cu(I) catalysis. Our custom-built microfluidic cell enhances reagent transport towards the electrified reactive interface. This continuous-flow microfluidic electrostatic reactor is an example of an electric-field driven platform where clean large-scale electrostatic catalytic processes can be efficiently implemented and regulated.
Collapse
Affiliation(s)
- Semih Sevim
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092, Zurich, Switzerland
| | - Roger Sanchis-Gual
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092, Zurich, Switzerland
| | - Carlos Franco
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092, Zurich, Switzerland
| | - Albert C Aragonès
- Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Marti i Franquès 1, 08028, Barcelona, Spain
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, Bentley, 6102, WA, Australia
| | - Donghoon Kim
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092, Zurich, Switzerland
| | - Rosaria Anna Picca
- Chemistry Department, University of Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092, Zurich, Switzerland
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Diagonal 645, 08028, Barcelona, Spain
| | - Salvador Pané
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092, Zurich, Switzerland.
| | - Ismael Díez-Pérez
- Department of Chemistry, Faculty of Natural, Mathematical & Engineering Sciences, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK.
| | - Josep Puigmartí-Luis
- Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Marti i Franquès 1, 08028, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
4
|
Badgurjar D, Huynh M, Masters B, Wuttig A. Non-Covalent Interactions Mimic the Covalent: An Electrode-Orthogonal Self-Assembled Layer. J Am Chem Soc 2023; 145:17734-17745. [PMID: 37548952 PMCID: PMC10436282 DOI: 10.1021/jacs.3c04387] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 08/08/2023]
Abstract
Charge-transfer events central to energy conversion and storage and molecular sensing occur at electrified interfaces. Synthetic control over the interface is traditionally accessed through electrode-specific covalent tethering of molecules. Covalent linkages inherently limit the scope and the potential stability window of molecularly tunable electrodes. Here, we report a synthetic strategy that is agnostic to the electrode's surface chemistry to molecularly define electrified interfaces. We append ferrocene redox reporters to amphiphiles, utilizing non-covalent electrostatic and van der Waals interactions to prepare a self-assembled layer stable over a 2.9 V range. The layer's voltammetric response and in situ infrared spectra mimic those reported for analogous covalently bound ferrocene. This design is electrode-orthogonal; layer self-assembly is reversible and independent of the underlying electrode material's surface chemistry. We demonstrate that the design can be utilized across a wide range of electrode material classes (transition metal, carbon, carbon composites) and morphologies (nanostructured, planar). Merging atomically precise organic synthesis of amphiphiles with in situ non-covalent self-assembly at polarized electrodes, our work sets the stage for predictive and non-fouling synthetic control over electrified interfaces.
Collapse
Affiliation(s)
| | | | - Benjamin Masters
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Anna Wuttig
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Sondhi P, Neupane D, Bhattarai JK, Demchenko AV, Stine KJ. Facile fabrication of hierarchically nanostructured gold electrode for bio-electrochemical applications. J Electroanal Chem (Lausanne) 2022; 924:116865. [PMID: 36405880 PMCID: PMC9673609 DOI: 10.1016/j.jelechem.2022.116865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Nanoporous gold (NPG) is one of the most extensively investigated nanomaterials owing to its tunable pore size, ease of surface modification, and range of applications from catalysis, actuation, and molecular release to the development of electrochemical sensors. In an effort to improve the usefulness of NPG, a simple and robust method for the fabrication of hierarchical and bimodal nanoporous gold electrodes (hb-NPG) containing both macro-and mesopores is reported using electrochemical alloying and dealloying processes to engineer a bicontinuous solid/void morphology. Scanning electron microscopy (color SEM) images depict the hierarchical pore structure created after the multistep synthesis with an ensemble of tiny pores below 100 nm in size located in ligaments spanning larger pores of several hundred nanometers. Smaller-sized pores are exploited for surface modification, and the network of larger pores aids in molecular transport. Cyclic voltammetry (CV) was used to compare the electrochemically active surface area of the hierarchical bimodal structure with that of the regular unimodal NPG with an emphasis on the critical role of both dealloying and annealing in creating the desired structure. The adsorption of different proteins was followed using UV-vis absorbance measurements of solution depletion revealing the high loading capacity of hb-NPG. The surface coverage of lipoic acid on the hb-NPG was analyzed using thermogravimetric analysis (TGA) and reductive desorption. The roughness factor determinations suggest that the fabricated hb-NPG electrode has tremendous potential for biosensor development by changing the scaling relations between volume and surface area which may lead to improved analytical performance. We have chosen to take advantage of the surface architectures of hb-NPG due to the presence of a large specific surface area for functionalization and rapid transport pathways for faster response. It is shown that the hb-NPG electrode has a higher sensitivity for the amperometric detection of glucose than does an NPG electrode of the same geometric surface area.
Collapse
Affiliation(s)
- Palak Sondhi
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, Saint Louis, MO 63121, USA
| | - Dharmendra Neupane
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, Saint Louis, MO 63121, USA
| | - Jay K. Bhattarai
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, Saint Louis, MO 63121, USA
| | | | - Keith J. Stine
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, Saint Louis, MO 63121, USA
| |
Collapse
|
6
|
Shin J, Eo JS, Jeon T, Lee T, Wang G. Advances of Various Heterogeneous Structure Types in Molecular Junction Systems and Their Charge Transport Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202399. [PMID: 35975456 PMCID: PMC9596861 DOI: 10.1002/advs.202202399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/11/2022] [Indexed: 05/31/2023]
Abstract
Molecular electronics that can produce functional electronic circuits using a single molecule or molecular ensemble remains an attractive research field because it not only represents an essential step toward realizing ultimate electronic device scaling but may also expand our understanding of the intrinsic quantum transports at the molecular level. Recently, in order to overcome the difficulties inherent in the conventional approach to studying molecular electronics and developing functional device applications, this field has attempted to diversify the electrical characteristics and device architectures using various types of heterogeneous structures in molecular junctions. This review summarizes recent efforts devoted to functional devices with molecular heterostructures. Diverse molecules and materials can be combined and incorporated in such two- and three-terminal heterojunction structures, to achieve desirable electronic functionalities. The heterojunction structures, charge transport mechanisms, and possible strategies for implementing electronic functions using various hetero unit materials are presented sequentially. In addition, the applicability and merits of molecular heterojunction structures, as well as the anticipated challenges associated with their implementation in device applications are discussed and summarized. This review will contribute to a deeper understanding of charge transport through molecular heterojunction, and it may pave the way toward desirable electronic functionalities in molecular electronics applications.
Collapse
Affiliation(s)
- Jaeho Shin
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Korea
- Department of ChemistryRice University6100 Main StreetHoustonTexas77005United States
| | - Jung Sun Eo
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Korea
| | - Takgyeong Jeon
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Korea
| | - Takhee Lee
- Department of Physics and AstronomyInstitute of Applied PhysicsSeoul National UniversitySeoul08826Korea
| | - Gunuk Wang
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Korea
- Department of Integrative Energy EngineeringKorea UniversitySeoul02841Korea
- Center for Neuromorphic EngineeringKorea Institute of Science and TechnologySeoul02792Korea
| |
Collapse
|
7
|
Khalid H, Opodi EM, Song X, Wang Z, Li B, Tian L, Yu X, Hu W. Modulated Structure and Rectification Properties of a Molecular Junction by a Mixed Self-Assembled Monolayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10893-10901. [PMID: 36007164 DOI: 10.1021/acs.langmuir.2c01751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The organization of the self-assembled monolayer (SAM) determines its electronic structure and so governs the charge transport process and device performance when adopted into a molecular device. We report a systematic study on the supramolecular structure and rectification performance of the ferrocene (11-ferrocenyl-1-undecanethiol, FUT) based SAM modulated by mixed SAM with inert 1-undecanethiol (C11SH) as diluent. We compared mixed SAMs by two different post assembly strategies, i.e., post assembly of C11SH on FUT SAM and post assembly of FUT on C11SH SAM. The organization and structure of FUT in the mixed SAM were extensively studied by cyclic voltammetry (CV) using the Laviron model. Rectification properties of the mixed SAM obtained using eutectic indium gallium (EGaIn) as the top electrode revealed that the magnitude and stability of the rectification ratio (RR) strongly correlated to not only the amount but also the phase structure and orientation of the FUT in the monolayer, resulting in a tunable RR and increased stability. The mixed monolayer achieved an increased performance relative to pure FUT by post assembling FUT on C11SH SAM, which formed an optimally dense and well-packed monolayer with the FUT head resting on the top of the alkane SAM.
Collapse
Affiliation(s)
- Hira Khalid
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Esther Martine Opodi
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xianneng Song
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Ziyan Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Baili Li
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Lixian Tian
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xi Yu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
8
|
Jangid V, Brunel D, Sanchez-Adaime E, Bharwal AK, Dumur F, Duché D, Abel M, Koudia M, Buffeteau T, Nijhuis CA, Berginc G, Lebouin C, Escoubas L. Improving Orientation, Packing Density, and Molecular Arrangement in Self-Assembled Monolayers of Bianchoring Ferrocene-Triazole Derivatives by "Click" Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3585-3596. [PMID: 35259297 DOI: 10.1021/acs.langmuir.2c00215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This work describes the self-assembled monolayers (SAMs) of two ferrocene derivatives with two anchoring groups (at the bottom and at the top of the SAM) deposited on ultraflat template-stripped gold substrates by cyclic voltammetry and analyzed by complementary surface characterization techniques. The SAM of each molecule is deposited by three different protocols: direct deposition (one step), click reaction on the surface (two steps), and reverse click reaction on the surface (two steps). The SAM structure is well studied to determine the SAM orientation, SAM arrangement, and ferrocene position within the SAM. Electron transfer kinetics have also been studied, which agree with the quality of each SAM. With the help of two anchoring groups and click-chemistry active functional groups, we have shown that the two molecules can be deposited by controlling the position of ferrocene at either end. We further investigated the involvement of the triazole five-membered ring in the electron transfer mechanism. We have found that a carbon spacer between ferrocene and triazole improves the SAM packing. This study enhances the understanding of tethering thiol and thiol acetate anchoring groups on gold by a controlled orientation, which may help in the development of functional molecular devices requiring two anchoring groups.
Collapse
Affiliation(s)
- Vikas Jangid
- Aix Marseille University, CNRS, Université de Toulon, IM2NP, UMR 7334, F-13397 Marseille, France
- Aix Marseille University, CNRS, MADIREL, UMR 7246, F-13397 Marseille, France
| | - Damien Brunel
- Aix Marseille University, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| | - Esteban Sanchez-Adaime
- Aix Marseille University, CNRS, Université de Toulon, IM2NP, UMR 7334, F-13397 Marseille, France
| | - Anil Kumar Bharwal
- Aix Marseille University, CNRS, Université de Toulon, IM2NP, UMR 7334, F-13397 Marseille, France
| | - Frédéric Dumur
- Aix Marseille University, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| | - David Duché
- Aix Marseille University, CNRS, Université de Toulon, IM2NP, UMR 7334, F-13397 Marseille, France
| | - Mathieu Abel
- Aix Marseille University, CNRS, Université de Toulon, IM2NP, UMR 7334, F-13397 Marseille, France
| | - Mathieu Koudia
- Aix Marseille University, CNRS, Université de Toulon, IM2NP, UMR 7334, F-13397 Marseille, France
| | - Thierry Buffeteau
- Université Bordeaux, Institut des Sciences Moléculaires ISM, CNRS UMR5255, F-33405 Talence, France
| | - Christian A Nijhuis
- Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA + Institute for Nanotechnology and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
| | | | - Chrystelle Lebouin
- Aix Marseille University, CNRS, MADIREL, UMR 7246, F-13397 Marseille, France
| | - Ludovic Escoubas
- Aix Marseille University, CNRS, Université de Toulon, IM2NP, UMR 7334, F-13397 Marseille, France
| |
Collapse
|
9
|
TOYOHARA M, SAGARA T. Anion-dominated Redox Reaction of a SAM of an Alkylthiolated Viologen Bearing a Covalently-attached Intramolecular Sulfonate Group on a Gold Electrode. ELECTROCHEMISTRY 2022. [DOI: 10.5796/electrochemistry.22-00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Masaki TOYOHARA
- Department of Advanced Technology and Science for Sustainable Development, Graduate School of Engineering, Nagasaki University
| | - Takamasa SAGARA
- Division of Chemistry and Materials Sciences, Graduate School of Engineering, Nagasaki University
| |
Collapse
|
10
|
Gupta N, Wilkinson EA, Karuppannan SK, Bailey L, Vilan A, Zhang Z, Qi DC, Tadich A, Tuite EM, Pike AR, Tucker JHR, Nijhuis CA. Role of Order in the Mechanism of Charge Transport across Single-Stranded and Double-Stranded DNA Monolayers in Tunnel Junctions. J Am Chem Soc 2021; 143:20309-20319. [PMID: 34826219 PMCID: PMC8662729 DOI: 10.1021/jacs.1c09549] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 11/29/2022]
Abstract
Deoxyribonucleic acid (DNA) has been hypothesized to act as a molecular wire due to the presence of an extended π-stack between base pairs, but the factors that are detrimental in the mechanism of charge transport (CT) across tunnel junctions with DNA are still unclear. Here we systematically investigate CT across dense DNA monolayers in large-area biomolecular tunnel junctions to determine when intrachain or interchain CT dominates and under which conditions the mechanism of CT becomes thermally activated. In our junctions, double-stranded DNA (dsDNA) is 30-fold more conductive than single-stranded DNA (ssDNA). The main reason for this large change in conductivity is that dsDNA forms ordered monolayers where intrachain tunneling dominates, resulting in high CT rates. By varying the temperature T and the length of the DNA fragments in the junctions, which determines the tunneling distance, we reveal a complex interplay between T, the length of DNA, and structural order on the mechanism of charge transport. Both the increase in the tunneling distance and the decrease in structural order result in a change in the mechanism of CT from coherent tunneling to incoherent tunneling (hopping). Our results highlight the importance of the interplay between structural order, tunneling distance, and temperature on the CT mechanism across DNA in molecular junctions.
Collapse
Affiliation(s)
- Nipun
Kumar Gupta
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre
for Advanced 2D Materials, National University
of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Edward A. Wilkinson
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, United Kingdom
| | - Senthil Kumar Karuppannan
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Lily Bailey
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, United Kingdom
| | - Ayelet Vilan
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Ziyu Zhang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Dong-Chen Qi
- Centre
for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Anton Tadich
- Australian
Synchrotron Clayton, 800 Blackburn Rd, Clayton, Victoria 3168, Australia
| | - Eimer M. Tuite
- Chemistry-School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, United
Kingdom
| | - Andrew R. Pike
- Chemistry-School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, United
Kingdom
| | - James H. R. Tucker
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, United Kingdom
| | - Christian A. Nijhuis
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre
for Advanced 2D Materials, National University
of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
- Department
of Molecules & Materials, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
11
|
González J, Sequí J. Analysis of the Electrochemical Response of Surface‐confined Bidirectional Molecular Electrocatalysts in the Presence of Intermolecular Interactions. ChemCatChem 2021. [DOI: 10.1002/cctc.202001599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joaquín González
- Departamento de Química Física Facultad de Química Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| | - José‐Alfonso Sequí
- Departamento de Química Física Facultad de Química Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| |
Collapse
|
12
|
Electrochemical determination of kinetic parameters of surface confined redox probes in presence of intermolecular interactions by means of Cyclic Voltammetry. Application to TEMPO monolayers in gold and platinum electrodes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137331] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Jia C, Grace IM, Wang P, Almeshal A, Huang Z, Wang Y, Chen P, Wang L, Zhou J, Feng Z, Zhao Z, Huang Y, Lambert CJ, Duan X. Redox Control of Charge Transport in Vertical Ferrocene Molecular Tunnel Junctions. Chem 2020. [DOI: 10.1016/j.chempr.2020.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Gonzalez J, Sequí JA. Influence of intermolecular interactions in the redox kinetics performance of surface confined probes by Square Wave Voltammetry. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|