García-López V, Zalibera M, Trapp N, Kuss-Petermann M, Wenger OS, Diederich F. Stimuli-Responsive Resorcin[4]arene Cavitands: Toward Visible-Light-Activated Molecular Grippers.
Chemistry 2020;
26:11451-11461. [PMID:
32780914 DOI:
10.1002/chem.202001788]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/14/2020] [Indexed: 01/14/2023]
Abstract
Resorcin[4]arene cavitands, equipped with diverse quinone (Q) and [Ru(bpy)2 dppz]2+ (bpy=2,2'-bipyridine, dppz=dipyrido[3,2-a:2',3'-c]phenazine) photosensitizing walls in different configurations, were synthesized. Upon visible-light irradiation at 420 nm, electron transfer from the [Ru(bpy)2 dppz]2+ to the Q generates the semiquinone (SQ) radical anion, triggering a large conformational switching from a flat kite to a vase with a cavity for the encapsulation of small guests, such as cyclohexane and heteroalicyclic derivatives, in CD3 CN. Depending on the molecular design, the SQ radical anion can live for several minutes (≈10 min) and the vase can be generated in a secondary process without need for addition of a sacrificial electron donor to accumulate the SQ state. Switching can also be triggered by other stimuli, such as changes in solvent, host-guest complexation, and chemical and electrochemical processes. This comprehensive investigation benefits the development of stimuli-responsive nanodevices, such as light-activated molecular grippers.
Collapse