1
|
Salunkhe TT, Kim IT. Expanded Graphite as a Superior Anion Host Carrying High Output Voltage (4.62 V) and High Energy Density for Lithium Dual-Ion Batteries. MICROMACHINES 2024; 15:1324. [PMID: 39597136 PMCID: PMC11596263 DOI: 10.3390/mi15111324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
The demand for safer, sustainable, and economical energy storage devices has motivated the development of lithium dual-ion batteries (Li_DIBs) for large-scale storage applications. For the Li_DIBs, expanded graphite (EG) cathodes are valuable as anion intercalation host frameworks to fabricate safer and more cost-effective devices. In this study, three different carbon cathode materials, including microwave-treated expanded graphite (MW-EG), ball-milled expanded graphite (BM-EG), and high-temperature-carbonized carbon nanoflakes (CNFs), were developed by different synthesis methods. Li_DIBs were configured by employing 4 M of LiPF6 in a dimethyl carbonate electrolyte and MW-EG/BM-EG/CNF as an anion host cathode. After 600 cycles, a Li-MW-EG Li_DIB exhibited a reversible capacity of 66.1 mAh/g with a high Coulombic efficiency of 96.2% at a current rate of 0.05 A/g and an outstanding average energy density of 298.97 Wh/kg (with an output voltage of 4.62 V). The remarkable electrochemical results are associated with (i) moderate structural defects with a very low ID/IG ratio (0.848), (ii) degree of graphitization, which improves the mechanical stability and conductivity, and (iii) large pore volume and pore diameter, easy facilitating the accumulation of PF6- ions. The energy density characteristics demonstrate the feasibility of utilizing MW-EG as a promising cathode for energy-related Li_DIB applications.
Collapse
Affiliation(s)
| | - Il Tae Kim
- Department of Chemical, Biological, and Battery Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
2
|
Matsuo Y, Inoo A, Inamoto J. Electrochemical intercalation of anions into graphite: Fundamental aspects, material synthesis, and application to the cathode of dual-ion batteries. ChemistryOpen 2024; 13:e202300244. [PMID: 38426688 PMCID: PMC11319239 DOI: 10.1002/open.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
In this review, fundamental aspects of the electrochemical intercalation of anions into graphite have been first summarized, and then described the electrochemical preparation of covalent-type GICs and application of graphite as the cathode of dual-ion battery. Electrochemical overoxidation of anion GICs provides graphite oxide and covalent-fluorine GICs, which are key functional materials for various applications including energy storage devices. The reaction conditions to obtain fully oxidized graphite has been mentioned. Concerning the application of graphite for the cathode of dual-ion battery, it stably delivers about 110 mA h g-1 of reversible capacity in usual organic electrolyte solutions. The combination of anion and solvent as well as the concentration of the anions in the electrolyte solutions greatly affect the performance of graphite cathode such as oxidation potential, rate capability, cycling properties, etc. The interfacial phenomenon is also important, and fundamental studies of charge transfer resistance, anion diffusion coefficient, and surface film formation behavior have also been summarized. The use of smaller anions, such as AlCl4 -, Br- can increase the capacity of graphite cathode. Several efforts on the structural modification of graphite and development of electrolyte solutions in which graphite cathode delivers higher capacity were also described.
Collapse
Affiliation(s)
| | - Akane Inoo
- University of Hyogo13-71 KitaojichoAkashiJapan
| | | |
Collapse
|
3
|
Kammoun H, Ossonon BD, Tavares AC. Nitrogen-Doped Graphene Materials with High Electrical Conductivity Produced by Electrochemical Exfoliation of Graphite Foil. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:123. [PMID: 38202578 PMCID: PMC10780345 DOI: 10.3390/nano14010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Nitrogen-doped graphene-based materials are of utmost importance in sensing and energy conversion devices due to their unique physicochemical properties. However, the presence of defects such as pyrrolic nitrogen and oxygenated functional groups reduces their electrical conductivity. Herein, a two-step approach based on the electrochemical exfoliation of graphite foils in aqueous mixed electrolytes followed by thermal reduction at 900 °C is used to prepare high-quality few layers of N-doped graphene-based materials. The exfoliations were conducted in 0.1 M (NH4)2SO4 or H2SO4 and HNO3 (5 mM or 0.1 M) electrolytes mixtures and the HNO3 vol% varied. Chemical analysis demonstrated that the as-prepared graphene oxides contain nitro and amine groups. Thermal reduction is needed for substitutional N-doping. Nitrogen and oxygen surface concentrations vary between 0.23-0.96% and 3-8%, respectively. Exfoliation in (NH4)2SO4 and/or 5 mM HNO3 favors the formation of pyridinic-N (10-40% of the total N), whereas 1 M HNO3 favors the formation of graphitic-N (≈60%). The electrical conductivity ranges between 166-2705 Scm-1. Raman spectroscopy revealed a low density of defects (ID/IG ratio between 0.1 and 0.7) and that most samples are composed of mono-to-bilayer graphene-based materials (IG/I2D integrated intensities ratio). Structural and compositional stability of selected samples after storage in air for three months is demonstrated. These results confirm the high quality of the synthesized undoped and N-doped graphene-type materials.
Collapse
Affiliation(s)
| | | | - Ana C. Tavares
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada; (H.K.); (B.D.O.)
| |
Collapse
|
4
|
He J, Yuan M, Ren H, Song T, Zhang Y. The electrochemical preparation and characterization of sulfur-free expanded graphite. J CHEM SCI 2023. [DOI: 10.1007/s12039-023-02138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
5
|
Graphene-based electrode materials used for some pesticide’s detection in food samples: A review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
6
|
Liu WW, Aziz A. Review on the Effects of Electrochemical Exfoliation Parameters on the Yield of Graphene Oxide. ACS OMEGA 2022; 7:33719-33731. [PMID: 36188239 PMCID: PMC9520741 DOI: 10.1021/acsomega.2c04099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Recent years have witnessed many breakthroughs in research on graphene as well as a significant improvement in the electrochemical synthesis methods of graphene oxide (GO). GO is a derivative of graphene which has attracted the focus of worldwide scientists and researchers because of its hydrophilic and easily functionalized properties. The electrochemical approach is popular because it saves time, creates zero explosion risk, releases no hazardous gases, and avoids environmental pollution. Although recent publications show that the green, rapid, and mass electrochemical synthesis of GO has more advantages as compared with the traditional Hummers method, it is crucial to study the effects of reaction parameters. Herein, we review recent various works regarding the influences of various reaction parameters on the synthesis of GO sheets. The advancement, current challenges, and solutions of electrochemical synthesis methods of GO are also outlined. Through this review, we hope to spark some clear ideas for anyone who wants to scale up the yield of GO.
Collapse
Affiliation(s)
- Wei-Wen Liu
- Institute
of Nano Electronic Engineering, Universiti
Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
| | - Azizan Aziz
- School
of Material and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai
Selatan, P. Pinang, Malaysia
| |
Collapse
|
7
|
Knuth RD, Knuth FA, Maron GK, Balboni RDC, Moreira ML, Raubach CW, Jardim PLG, Carreno NLV, Avellaneda CO, Moreira EC, Cava SS. Development of xanthan gum‐based solid polymer electrolytes with addition of expanded graphite nanosheets. J Appl Polym Sci 2022. [DOI: 10.1002/app.52400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rogerio Daltro Knuth
- CCAF, CDTEC‐PPGCEM Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Flávio A. Knuth
- CCAF, CDTEC‐PPGCEM Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Guilherme K. Maron
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
- Postgraduate Program in Biotechnology, Technology Development Center Federal University of Pelotas Capão do Leão Rio Grande do Sul Brazil
| | - Raphael D. C. Balboni
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Mario L. Moreira
- CCAF, CDTEC‐PPGCEM Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Cristiane W. Raubach
- CCAF, CDTEC‐PPGCEM Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Pedro L. G. Jardim
- CCAF, CDTEC‐PPGCEM Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Neftali L. V. Carreno
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - César O. Avellaneda
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| | - Eduardo C. Moreira
- Department of Physics Federal University of Pampa Bagé Rio Grande do Sul Brazil
| | - Sérgio S. Cava
- CCAF, CDTEC‐PPGCEM Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
- Graduate Program in Materials Science and Engineering, Technological Development Center – CDTEC Federal University of Pelotas Pelotas Rio Grande do Sul Brazil
| |
Collapse
|
8
|
Kornilov DY, Gubin SP. Graphene Oxide: Structure, Properties, Synthesis, and Reduction (A Review). RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s0036023620130021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Thermal exfoliation of electrochemically synthesized graphite intercalation compound with perrhenic acid. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04642-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractIn present work, we describe the synthesis of graphite intercalation compounds with perrhenic acid (HReO4-GIC) through the anodic oxidation of graphite in aqueous perrhenic acid solution and their thermal exfoliation. Due to electrochemical treatment of graphite in perrhenic acid solution, ReO4− ions are intercalated into interlayer spaces of graphite. Anodic oxidation of graphite in HReO4 solution leads to the formation of 3-stage GIC. Simultaneously, some amount of perrhenic acid becomes deposited on the graphite surface and edges. In the next step, thermal treatment of the previously synthesized GIC was performed, causing both the exfoliation of graphitic structure and transformation of perrhenic acid into rhenium oxides on the surface of graphene layers. The yielded product was exfoliated graphite-ReO2/ReO3 composite. The obtained composite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy. Additionally, specific surface area of the exfoliated materials was measured.
Collapse
|
10
|
Chen S, Xu N, Ren M, Xiao C, Zhang X. PEI/GO-codecorated poly(acrylic acid-co-hydroxyethyl methacrylate) fiber as a carrier to support iron ions and its catalytic performance for methylene blue decolorization. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1735940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Shunqiang Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, College of Material Science and Engineering, Tiangong University, Tianjin, China
| | - Naiku Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, College of Material Science and Engineering, Tiangong University, Tianjin, China
| | - Mengru Ren
- State Key Laboratory of Separation Membranes and Membrane Processes, College of Material Science and Engineering, Tiangong University, Tianjin, China
| | - Changfa Xiao
- State Key Laboratory of Separation Membranes and Membrane Processes, College of Material Science and Engineering, Tiangong University, Tianjin, China
| | - Xiangwu Zhang
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry, and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
11
|
Lowe SE, Shi G, Zhang Y, Qin J, Jiang L, Jiang S, Al-Mamun M, Liu P, Zhong YL, Zhao H. The role of electrolyte acid concentration in the electrochemical exfoliation of graphite: Mechanism and synthesis of electrochemical graphene oxide. NANO MATERIALS SCIENCE 2019. [DOI: 10.1016/j.nanoms.2019.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|