1
|
Niedziałkowski P, Jurczak P, Orlikowska M, Wcisło A, Ryl J, Ossowski T, Czaplewska P. Phospholipid-functionalized gold electrode for cellular membrane interface studies - interactions between DMPC bilayer and human cystatin C. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184266. [PMID: 38151198 DOI: 10.1016/j.bbamem.2023.184266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
This work describes the electrochemical studies on the interactions between V57G mutant of human cystatin C (hCC V57G) and membrane bilayer immobilized on the surface of a gold electrode. The electrode was modified with 6-mercaptohexan-1-ol (MCH) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). DMPC was used as a membrane mimetic for monitoring electrochemical changes resulting from the interactions between the functionalized electrode surface and human cystatin C. The interactions between the modified electrode and hCC V57G were investigated by cyclic voltammetry and electrochemical impedance spectroscopy in a phosphate buffered saline (PBS) containing Fe(CN)63-/4- as a redox probe. The electrochemical measurements confirm that fabricated electrode is sensitive to hCC V57G at the concentration of 1 × 10-14 M. The incubation studies carried out at higher concentrations resulted in insignificant changes observed in cyclic voltammetry and electrochemical impedance spectroscopy measurements. The calculated values of surface coverage θR confirm that the electrode is equally covered at higher concentrations of hCC V57G. Measurements of wettability and surface free energy made it possible to determine the influence of individual structural elements of the modified gold electrode on its properties, and thus allowed to understand the nature of the interactions. Contact angle values confirmed the results obtained during electrochemical measurements, indicating the sensitivity of the electrode towards hCC V57G at the concentration of 1 × 10-14 M. In addition, the XPS spectra confirmed the successful anchoring of hCC V57G to the DMPC-functionalized surface.
Collapse
Affiliation(s)
- Paweł Niedziałkowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland.
| | - Przemysław Jurczak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland; Specialist Laboratories, Intercollegiate Faculty of Biotechnology UG&MUG, Abrahama 58, Gdańsk 80-307, Poland.
| | - Marta Orlikowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Anna Wcisło
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Jacek Ryl
- Division of Electrochemistry and Surface Physical Chemistry, Institute of Nanotechnology and Materials Engineering and Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Tadeusz Ossowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Paulina Czaplewska
- Specialist Laboratories, Intercollegiate Faculty of Biotechnology UG&MUG, Abrahama 58, Gdańsk 80-307, Poland
| |
Collapse
|
2
|
Domaros A, Zarzeczańska D, Ossowski T, Wcisło A. Controlled Silanization of Transparent Conductive Oxides as a Precursor of Molecular Recognition Systems. MATERIALS (BASEL, SWITZERLAND) 2022; 16:309. [PMID: 36614648 PMCID: PMC9822489 DOI: 10.3390/ma16010309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/18/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The search for new molecular recognition systems has become the goal of modern electrochemistry. Creating a matrix in which properties can be controlled to obtain a desired analytical signal is an essential part of creating such tools. The aim of this work was to modify the surface of electrodes based on transparent conductive oxides with the use of selected alkoxysilanes (3-aminopropyltrimethoxysilane, trimethoxy(propyl)silane, and trimethoxy(octyl)silane). Electrochemical impedance spectroscopy and cyclic voltammetry techniques, as well as contact angle measurements, were used to determine the properties of the obtained layers. Here, we prove that not only was the structure of alkoxysilanes taken into account but also the conditions of the modification process-reaction conditions (time and temperature), double alkoxysilane modification, and mono- and binary component modification. Our results enabled the identification of the parameters that are important to ensure the effectiveness of the modification process. Moreover, we confirmed that the selection of the correct alkoxysilane allows the surface properties of the electrode material to be controlled and, consequently, the charge transfer process at the electrode/solution interface, hence enabling the creation of selective molecular recognition systems.
Collapse
Affiliation(s)
- Anna Domaros
- Correspondence: (A.D.); (A.W.); Tel.: +48-58523-5106 (A.D.); +48-58523-5457 (A.W.)
| | | | | | - Anna Wcisło
- Correspondence: (A.D.); (A.W.); Tel.: +48-58523-5106 (A.D.); +48-58523-5457 (A.W.)
| |
Collapse
|
3
|
The Effect of pH Solution in the Sol–Gel Process on the Structure and Properties of Thin SnO2 Films. Processes (Basel) 2022. [DOI: 10.3390/pr10061116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The synthesis of surface-active structures is important for creating many applications. The structural formation of SnO2 thin films in the range from 1.4 to 1.53 pH is studied in this work. This process occurs on the surface of the sample in the range of 1.4 to 1.49 and in the volume in the range of 1.51 to 1.53. SnO2 is formed after annealing at 400 ∘C, according to XRD. Doping NH4OH to solution stimulates particle coagulation and gel formation. All of these have an impact on the transparency of samples investigated by spectrophotometric methods. By increasing the pH, the resistance raises at room temperature. The Eg calculation along the fundamental absorption edge shows that it is greater than 3.6 eV’ for SnO2 films. According to the Burstein–Moss effect, a change of the bandgap is related to the increased concentration of the free charge carriers. Elemental analysis has shown that chlorine ions are considered to be additional sources of charge carriers. The value pH = 1.49 is critical since there is a drastic change in the structure of the samples, the decrease in transparency is replaced by its increase, and the energy of activation of impurity levels is changed.
Collapse
|
4
|
Adamska E, Niska K, Wcisło A, Grobelna B. Characterization and Cytotoxicity Comparison of Silver- and Silica-Based Nanostructures. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4987. [PMID: 34501076 PMCID: PMC8433955 DOI: 10.3390/ma14174987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 01/25/2023]
Abstract
Core-shell structures are the most common type of composite material nanostructures due to their multifunctional properties. Silver nanoparticles show broad antimicrobial activity, but the safety of their utilization still remains an issue to tackle. In many applications, the silver core is coated with inorganic shell to reduce the metal toxicity. This article presents the synthesis of various materials based on silver and silica nanoparticles, including SiO2@Ag, Ag@SiO2, and sandwich nanostructures-Ag@SiO2@Ag-and the morphology of these nanomaterials based on transmission electron microscopy (TEM), UV-Vis spectroscopy, and FT-IR spectroscopy. Moreover, we conducted the angle measurements due to the strong relationship between the level of surface wettability and cell adhesion efficiency. The main aim of the study was to determine the cytotoxicity of the obtained materials against two types of human skin cells-keratinocytes (HaCaT) and fibroblasts (HDF). We found that among all the obtained structures, SiO2@Ag and Ag@SiO2 showed the lowest cell toxicity and very high half-maximal inhibitory concentration. Moreover, the measurements of the contact angle showed that Ag@SiO2 nanostructures were different from other materials due to their superhydrophilic nature. The novel approach presented here shows the promise of implementing core-shell type nanomaterials in skin-applied cosmetic or medical products.
Collapse
Affiliation(s)
- Elżbieta Adamska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (E.A.); (A.W.)
| | - Karolina Niska
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdańsk, Debinki St., 80-210 Gdańsk, Poland;
| | - Anna Wcisło
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (E.A.); (A.W.)
| | - Beata Grobelna
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (E.A.); (A.W.)
| |
Collapse
|
5
|
Cirocka A, Zarzeczańska D, Wcisło A. Good Choice of Electrode Material as the Key to Creating Electrochemical Sensors-Characteristics of Carbon Materials and Transparent Conductive Oxides (TCO). MATERIALS 2021; 14:ma14164743. [PMID: 34443265 PMCID: PMC8400331 DOI: 10.3390/ma14164743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/07/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
The search for new electrode materials has become one of the goals of modern electrochemistry. Obtaining electrodes with optimal properties gives a product with a wide application potential, both in analytics and various industries. The aim of this study was to select, from among the presented electrode materials (carbon and oxide), the one whose parameters will be optimal in the context of using them to create sensors. Electrochemical impedance spectroscopy and cyclic voltammetry techniques were used to determine the electrochemical properties of the materials. On the other hand, properties such as hydrophilicity/hydrophobicity and their topological structure were determined using contact angle measurements and confocal microscopy, respectively. Based on the research carried out on a wide group of electrode materials, it was found that transparent conductive oxides of the FTO (fluorine doped tin oxide) type exhibit optimal electrochemical parameters and offer great modification possibilities. These electrodes are characterized by a wide range of work and high chemical stability. In addition, the presence of a transparent oxide layer allows for the preservation of valuable optoelectronic properties. An important feature is also the high sensitivity of these electrodes compared to other tested materials. The combination of these properties made FTO electrodes selected for further research.
Collapse
Affiliation(s)
- Anna Cirocka
- Correspondence: (A.C.); (A.W.); Tel.: +48-58523-5106 (A.C.); +48-58523-5157 (A.W.)
| | | | - Anna Wcisło
- Correspondence: (A.C.); (A.W.); Tel.: +48-58523-5106 (A.C.); +48-58523-5157 (A.W.)
| |
Collapse
|
6
|
Label-Free Electrochemical Test of Protease Interaction with a Peptide Substrate Modified Gold Electrode. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Efficient deposition of biomolecules on the surface, maintaining their full activity and stability, is a most significant factor in biosensor construction. For this reason, more and more research is focused on the development of electrochemical biosensors that have the ability to electrically detect adsorbed molecules on electrode surface with high selectivity and sensitivity. The presented research aims to develop an efficient methodology that allows quantification of processes related to the evaluation of enzyme activity (proprotein convertase) using electrochemical methods. In this study we used impedance spectroscopy to investigate the immobilization of peptide substrate (Arg-Val-Arg-Arg) modified with 11-mercaptoundecanoic acid on the surface of gold electrode. Both the synthesis of the peptide substrate as well as the full electrochemical characteristics of the obtained electrode materials have been described. Experimental conditions, including concentration of peptide substrate immobilization, modification time, linker, and the presence of additional blocking groups have been optimized. The main advantages of the described method is that it makes it possible to observe the peptide substrate–enzyme interaction without the need to use fluorescent labels. This also allows observation of this interaction at a very low concentration. Both of these factors make this new technique competitive with the standard spectrofluorimetric method.
Collapse
|
7
|
Dąbrowa T, Wcisło A, Majstrzyk W, Niedziałkowski P, Ossowski T, Więckiewicz W, Gotszalk T. Adhesion as a component of retention force of overdenture prostheses-study on selected Au based dental materials used for telescopic crowns using atomic force microscopy and contact angle techniques. J Mech Behav Biomed Mater 2021; 121:104648. [PMID: 34153624 DOI: 10.1016/j.jmbbm.2021.104648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/25/2022]
Abstract
Contemporary prosthetic materials are characterized by highly specific preparation for a given application. This means that at the stage of their creation, not only their function is taken into account, but also the long-term behavior of this material during use. In the case of telescopic crowns, an important factor not yet appearing in the research is the aspect of adhesion force and its dependence on the type of biomaterial, but also the properties of human saliva. The use of artificial saliva, which creates a lubricating layer, reduces the wear on the surface of the telescopic crowns by reducing friction. The impact of artificial saliva on the formation of chemical bonds between prosthetic elements, thus contributing to the so-called retention force has not yet been studied. In this work, two types of measurements of gold telescopic crown materials in the aspect of the adhesion process are presented. Obtained results allowed to fully characterize this phenomenon. We modeled the load force between the microcircuit and the surface under study to suit the conditions between the primary and secondary crowns in the patient's mouth.
Collapse
Affiliation(s)
- Tomasz Dąbrowa
- Department of Prostodontics, Wrocław Medical University, ul. Krakowska 26, 50-425, Wrocław, Poland
| | - Anna Wcisło
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland.
| | - Wojciech Majstrzyk
- Nanometrology Department, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50-372, Wroclaw, Poland
| | - Paweł Niedziałkowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Tadeusz Ossowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Włodzimierz Więckiewicz
- Department of Prostodontics, Wrocław Medical University, ul. Krakowska 26, 50-425, Wrocław, Poland
| | - Teodor Gotszalk
- Nanometrology Department, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50-372, Wroclaw, Poland
| |
Collapse
|
8
|
Environmental Criteria for Assessing the Competitiveness of Public Tenders with the Replacement of Large-Scale LEDs in the Outdoor Lighting of Cities as a Key Element for Sustainable Development: Case Study Applied with PROMETHEE Methodology. SUSTAINABILITY 2019. [DOI: 10.3390/su11215982] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The technological change to LEDs is an unstoppable reality which, little by little, is becoming increasingly important in terms of the lighting inside and outside our homes. The exterior lighting of our cities is moving decisively and clearly towards the incorporation of this technology in urban spaces. The energy efficiency, light quality, and economic benefits of LED technology are an unquestionable reality. This is causing public administration projects involving large-scale switches to LEDs to be promoted and financed; however, it is beginning to be observed that the commitment to the policies decided by this technology should take into account some environmental aspects which have not been studied to date. The environmental impact of the substitutions is caused by the need to valorize the replaced luminaires. Until now, most have been stored without the possibility of use, reuse, or recovery. The environmental impact produced in the manufacture of LED luminaires that replace the old sodium vapor (VSAP) or metal halide (MH) discharge lamps must also be considered. In addition, in the administrative clauses specifications that govern the public tenders, it is observed that the fundamental environmental aspects both of recycling the old lamps, and of the life cycle analysis (LCA) of the luminaires that are replacing them, have not been contemplated or valued with sufficient weight. In addition, there are very few public substitution contests in which environmental criteria are rewarded or valued in an important way. This work intends to summarize a methodological proposal using the techniques of multiple decision-making criteria for the selection of bidding companies for public outdoor lighting competitions. We propose the use of the PROMETHEE method multi-criteria analysis for the application of the most commonly used criteria for the luminaire LED selection process, including an environmental impact assessment with LCA techniques, and propose this as a case or model guide in the public contests of cities. A model of the bidding conditions that addresses and assesses the environmental aspects which are absolutely key to sustainable development is supported by the ecological criteria of the circular economy.
Collapse
|