1
|
Abbasi R, Hu X, Zhang A, Dummer I, Wachsmann-Hogiu S. Optical Image Sensors for Smart Analytical Chemiluminescence Biosensors. Bioengineering (Basel) 2024; 11:912. [PMID: 39329654 PMCID: PMC11428294 DOI: 10.3390/bioengineering11090912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Optical biosensors have emerged as a powerful tool in analytical biochemistry, offering high sensitivity and specificity in the detection of various biomolecules. This article explores the advancements in the integration of optical biosensors with microfluidic technologies, creating lab-on-a-chip (LOC) platforms that enable rapid, efficient, and miniaturized analysis at the point of need. These LOC platforms leverage optical phenomena such as chemiluminescence and electrochemiluminescence to achieve real-time detection and quantification of analytes, making them ideal for applications in medical diagnostics, environmental monitoring, and food safety. Various optical detectors used for detecting chemiluminescence are reviewed, including single-point detectors such as photomultiplier tubes (PMT) and avalanche photodiodes (APD), and pixelated detectors such as charge-coupled devices (CCD) and complementary metal-oxide-semiconductor (CMOS) sensors. A significant advancement discussed in this review is the integration of optical biosensors with pixelated image sensors, particularly CMOS image sensors. These sensors provide numerous advantages over traditional single-point detectors, including high-resolution imaging, spatially resolved measurements, and the ability to simultaneously detect multiple analytes. Their compact size, low power consumption, and cost-effectiveness further enhance their suitability for portable and point-of-care diagnostic devices. In the future, the integration of machine learning algorithms with these technologies promises to enhance data analysis and interpretation, driving the development of more sophisticated, efficient, and accessible diagnostic tools for diverse applications.
Collapse
Affiliation(s)
| | | | | | | | - Sebastian Wachsmann-Hogiu
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; (R.A.); (X.H.); (A.Z.); (I.D.)
| |
Collapse
|
2
|
Ma T, Ren S, Wang Y, Yu H, Li L, Li X, Zhang L, Yu J, Zhang Y. Paper-based bipolar electrode electrochemiluminescence sensors for point-of-care testing. Biosens Bioelectron 2023; 235:115384. [PMID: 37244092 DOI: 10.1016/j.bios.2023.115384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
In the past few years, point-of-care testing (POCT) technology has crossed the boundaries of laboratory determination and entered the stage of practical applications. Herein, the latest advances and principal issues in the design and fabrication of paper-based bipolar electrode electrochemiluminescence (BPE-ECL) sensors, which are widely used in the POCT field, are highlighted. After introducing the attractive physical and chemical properties of cellulose paper, various approaches aimed at enhancing the functions of the paper, and their underlying principles are described. The materials typically employed for fabricating paper-based BPE are also discussed in detail. Subsequently, the universal method of enhancing BPE-ECL signal and improving detection accuracy is put forward, and the ECL detector widely used is introduced. Furthermore, the application of paper-based BPE-ECL sensors in biomedical, food, environmental and other fields are displayed. Finally, future opportunities and the remaining challenges are analyzed. It is expected that more design concepts and working principles for paper-based BPE-ECL sensors will be developed in the near future, paving the way for the development and application of paper-based BPE-ECL sensors in the POCT field and providing certain guarantee for the development of human health.
Collapse
Affiliation(s)
- Tinglei Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Suyue Ren
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yixiang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Haihan Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Luqing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
3
|
Chen B, Tao Q, OuYang S, Wang M, Liu Y, Xiong X, Liu S. Biocathodes reducing oxygen in BPE-ECL system for rapid screening of E. coli O157:H7. Biosens Bioelectron 2022; 221:114940. [DOI: 10.1016/j.bios.2022.114940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/12/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
|
4
|
Singh A, Ahmed A, Sharma A, Arya S. Graphene and Its Derivatives: Synthesis and Application in the Electrochemical Detection of Analytes in Sweat. BIOSENSORS 2022; 12:910. [PMID: 36291046 PMCID: PMC9599499 DOI: 10.3390/bios12100910] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 05/25/2023]
Abstract
Wearable sensors and invasive devices have been studied extensively in recent years as the demand for real-time human healthcare applications and seamless human-machine interaction has risen exponentially. An explosion in sensor research throughout the globe has been ignited by the unique features such as thermal, electrical, and mechanical properties of graphene. This includes wearable sensors and implants, which can detect a wide range of data, including body temperature, pulse oxygenation, blood pressure, glucose, and the other analytes present in sweat. Graphene-based sensors for real-time human health monitoring are also being developed. This review is a comprehensive discussion about the properties of graphene, routes to its synthesis, derivatives of graphene, etc. Moreover, the basic features of a biosensor along with the chemistry of sweat are also discussed in detail. The review mainly focusses on the graphene and its derivative-based wearable sensors for the detection of analytes in sweat. Graphene-based sensors for health monitoring will be examined and explained in this study as an overview of the most current innovations in sensor designs, sensing processes, technological advancements, sensor system components, and potential hurdles. The future holds great opportunities for the development of efficient and advanced graphene-based sensors for the detection of analytes in sweat.
Collapse
Affiliation(s)
| | | | | | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu 180006, India
| |
Collapse
|
5
|
Zhang X, Wang ZJ, Wang X, Zhang YH, Qu J, Ding SN. Band-Edge Effect-Induced Electrochemiluminescence Signal Amplification Based on Inverse Opal Photonic Crystals for Ultrasensitive Detection of Carcinoembryonic Antigen. Anal Chem 2022; 94:9919-9926. [PMID: 35749110 DOI: 10.1021/acs.analchem.2c01986] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photonic crystals (PCs) have emerged as a promising electrochemiluminescence (ECL) matrix in the domain of immunoassay. Making maximum use of light manipulation properties of PCs is highly desired for improving the sensitivity. In this work, we proposed a band-edge effect-induced ECL enhancement strategy based on silica inverse opal PCs (SIOPCs). By fine-tuning the lattice constant and carefully calibrating the stopband position, we found that the band edge of the stopband exerted significant influences on the ECL intensity and spectral distribution. The high density of states at the blue edge of the photonic band gap increased the radiative transition probability of ECL emitters and enhanced the photon extraction during propagation, giving rise to ∼20-fold ECL signal amplification accompanied by a redistributed ECL spectrum for the Ru(bpy)32+-TPrA system. In combination with the intrinsic structural superiority, like large specific surface area and interconnected macropores, the developed SIOPC electrode was successfully applied in constructing a sandwich-type immunosensor. The fabricated immunosensor displayed a very low detection limit of 0.032 pg/mL and a wide linear range of 0.1 pg/mL-150 ng/mL for a carcinoembryonic antigen assay, showing its potential application in disease diagnosis.
Collapse
Affiliation(s)
- Xin Zhang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.,School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhong-Jie Wang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xu Wang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ya-Heng Zhang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jian Qu
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Shou-Nian Ding
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
6
|
Woo J, Kim J, Kim J. Indium tin oxide bipolar electrodes modified with Pt nanoparticles encapsulated inside dendrimers as sensitive electrochemiluminescence platforms. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Che ZY, Wang XY, Ma X, Ding SN. Bipolar electrochemiluminescence sensors: From signal amplification strategies to sensing formats. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214116] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Zhang J, Zhang L, Li Z, Zhang Q, Li Y, Ying Y, Fu Y. Nanoconfinement Effect for Signal Amplification in Electrochemical Analysis and Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101665. [PMID: 34278716 DOI: 10.1002/smll.202101665] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Owing to the urgent need for electrochemical analysis and sensing of trace target molecules in various fields such as medical diagnosis, agriculture and food safety, and environmental monitoring, signal amplification is key to promoting analysis and sensing performance. The nanoconfinement effect, derived from nanoconfined spaces and interfaces with sizes approaching those of target molecules, has witnessed rapid development for ultra-sensitive analyzing and sensing. In this review, the two main types of nanoconfinement systems - confined nanochannels and planes - are assessed and recent progress is highlighted. The merits of each nanoconfinement system, the nanoconfinement effect mechanisms, and applications for electrochemical analysis and sensing are summarized and discussed. This review aims to help deepen the understanding of nanoconfinement devices and their effects in order to develop new analysis and sensing applications for researchers in various fields.
Collapse
Affiliation(s)
- Jie Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Lin Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Zhishang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Qi Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| |
Collapse
|
9
|
Nikolaou P, Valenti G, Paolucci F. Nano-structured materials for the electrochemiluminescence signal enhancement. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Mutalib NAA, Deng Y, Hsueh A, Kariya K, Kurihara T, Suzuki H. Control of Interfacial Potentials and Redox Reactions on Bipolar Electrodes Using Ag/AgCl. ELECTROANAL 2021. [DOI: 10.1002/elan.202100202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Nurul Asyikeen Ab Mutalib
- Graduate School of Pure and Applied Sciences University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Yi Deng
- Graduate School of Pure and Applied Sciences University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - An‐Ju Hsueh
- Graduate School of Pure and Applied Sciences University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Koki Kariya
- Graduate School of Pure and Applied Sciences University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Toshiaki Kurihara
- Graduate School of Pure and Applied Sciences University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Hiroaki Suzuki
- Graduate School of Pure and Applied Sciences University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| |
Collapse
|
11
|
Bouffier L, Zigah D, Sojic N, Kuhn A. Bipolar (Bio)electroanalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:65-86. [PMID: 33940930 DOI: 10.1146/annurev-anchem-090820-093307] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This contribution reviews a selection of the most recent studies on the use of bipolar electrochemistry in the framework of analytical chemistry. Despite the fact that the concept is not new, with several important studies dating back to the middle of the last century, completely novel and very original approaches have emerged over the last decade. This current revival illustrates that scientists still (re)discover some exciting virtues of this approach, which are useful in many different areas, especially for tackling analytical challenges in an unconventional way. In several cases, this "wireless" electrochemistry strategy enables carrying out measurements that are simply not possible with classic electrochemical approaches. This review will hopefully stimulate new ideas and trigger scientists to integrate some aspects of bipolar electrochemistry in their work in order to drive the topic into yet unexplored and eventually completely unexpected directions.
Collapse
Affiliation(s)
- Laurent Bouffier
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Dodzi Zigah
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Neso Sojic
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Alexander Kuhn
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| |
Collapse
|
12
|
Affiliation(s)
- Kira L. Rahn
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| | - Robbyn K. Anand
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| |
Collapse
|
13
|
Han SH, Rho J, Lee S, Kim M, Kim SI, Park S, Jang W, Lee CH, Chang BY, Chung TD. In Situ Real-Time Monitoring of ITO Film under a Chemical Etching Process Using Fourier Transform Electrochemical Impedance Spectroscopy. Anal Chem 2020; 92:10504-10511. [PMID: 32489093 DOI: 10.1021/acs.analchem.0c01294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a novel approach to the in situ real-time investigation of an ITO electrode during the wet etching process, step-excitation Fourier-transform electrochemical impedance spectroscopy (FT-EIS) was implemented. The equivalent circuit parameters (e.g., Rct, Cdl) continuously obtained by the FT-EIS measurements during the entire etching process showed an electrode activation at the initial period as well as the completion of etching. The FT-EIS results were further validated by cyclic voltammograms and impedance measurements of partially etched ITO films using ferri- and ferrocyanide solution in combination with FESEM imaging, EDS, XRD analyses, and COMSOL simulation. We also demonstrated that this technique can be further utilized to obtain intact interdigitated array (IDA) electrodes in a reproducible manner, which is generally considered to be quite tricky due to delicacy of the pattern. Given that the FT-EIS allows for instantaneous snapshots of the electrode at every moment, this work may hold promise for in situ real-time examination of structural, electrokinetic, or mass transfer-related information on electrochemical systems undergoing constantly changing, transient processes including etching, which would be impossible with conventional electroanalytical techniques.
Collapse
Affiliation(s)
- Seok Hee Han
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jihun Rho
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Sunmi Lee
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon-Si, Gyeonggi-do 16229, South Korea
| | - Moonjoo Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Sung Il Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Sangmee Park
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon-Si, Gyeonggi-do 16229, South Korea
| | - Woohyuk Jang
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Chang Heon Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Byoung-Yong Chang
- Department of Chemistry, Pukyong University, Busan 48513, South Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea.,Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon-Si, Gyeonggi-do 16229, South Korea.,Advanced Institute of Convergence Technology, Suwon-Si, Gyeonggi-do 16229, South Korea
| |
Collapse
|
14
|
Hu S, Gao J. Shaping Electroluminescence with a Large, Printed Bipolar Electrode Array: Solid Polymer Electrochemical Cells with Over a Thousand Light‐Emitting p–n Junctions. ChemElectroChem 2020. [DOI: 10.1002/celc.202000153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shiyu Hu
- Department of Physics Engineering Physics and Astronomy Queen's University Kingston Ontario K7 L 3 N6 Canada
| | - Jun Gao
- Department of Physics Engineering Physics and Astronomy Queen's University Kingston Ontario K7 L 3 N6 Canada
| |
Collapse
|
15
|
Ma X, Liao W, Zhou H, Tong Y, Yan F, Tang H, Liu J. Highly sensitive detection of rutin in pharmaceuticals and human serum using ITO electrodes modified with vertically-ordered mesoporous silica–graphene nanocomposite films. J Mater Chem B 2020; 8:10630-10636. [DOI: 10.1039/d0tb01996h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A vertically-ordered silica–graphene nanocomposite film modified transparent ITO electrode was prepared by a one-step electrodeposition method for antifouling detection of rutin in pharmaceuticals and human serum.
Collapse
Affiliation(s)
- Xinyu Ma
- Department of Chemistry
- Zhejiang Sci-Tech University
- 928 Second Avenue
- Xiasha Higher Education Zone
- Hangzhou
| | - Wenyan Liao
- Affiliated International Zhuang Medicine Hospital, Guangxi University of Chinese Medicine
- Nanning
- P. R. China
| | - Huaxu Zhou
- Department of Chemistry
- Zhejiang Sci-Tech University
- 928 Second Avenue
- Xiasha Higher Education Zone
- Hangzhou
| | - Yun Tong
- Department of Chemistry
- Zhejiang Sci-Tech University
- 928 Second Avenue
- Xiasha Higher Education Zone
- Hangzhou
| | - Fei Yan
- Department of Chemistry
- Zhejiang Sci-Tech University
- 928 Second Avenue
- Xiasha Higher Education Zone
- Hangzhou
| | - Hongliang Tang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine
- Nanning
- P. R. China
| | - Jiyang Liu
- Department of Chemistry
- Zhejiang Sci-Tech University
- 928 Second Avenue
- Xiasha Higher Education Zone
- Hangzhou
| |
Collapse
|