1
|
Wu H, Zhang Q, Chu S, Du H, Wang Y, Liu P. Single-Atom Underpotential Deposition at Specific Sites of N-Doped Graphene for Hydrogen Evolution Reaction Electrocatalysis. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5082. [PMID: 39459787 PMCID: PMC11509329 DOI: 10.3390/ma17205082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Single-atom catalysts (SACs) have the advantages of good active site uniformity, high atom utilization, and high catalytic activity. However, the study of its controllable synthesis still needs to be thoroughly investigated. In this paper, we deposited Cu SAs on nanoporous N-doped graphene by underpotential deposition and further obtained a Pt SAC by a galvanic process. Electrochemical and spectroscopic analyses showed that the pyridine-like N defect sites are the specific sites for the underpotential-deposited SAs. The obtained Pt SAC exhibits a good activity in a hydrogen evolution reaction with a turnover frequency of 25.1 s-1. This work reveals the specific sites of UPD of SAs on N-doped graphene and their potential applications in HERs, which provides a new idea for the design and synthesis of SACs.
Collapse
Affiliation(s)
- Haofei Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.)
- Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Jiao Tong University—JA Solar New Energy Materials Joint Research Center, Shanghai 200240, China
| | - Qiwen Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.)
- Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Jiao Tong University—JA Solar New Energy Materials Joint Research Center, Shanghai 200240, China
| | - Shufen Chu
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Du
- Shanghai Jiao Tong University—JA Solar New Energy Materials Joint Research Center, Shanghai 200240, China
- JA Solar Technology Co., Ltd., Beijing 100160, China
| | - Yanyue Wang
- Shanghai Jiao Tong University—JA Solar New Energy Materials Joint Research Center, Shanghai 200240, China
- JA Solar Technology Co., Ltd., Beijing 100160, China
| | - Pan Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (H.W.)
- Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Jiao Tong University—JA Solar New Energy Materials Joint Research Center, Shanghai 200240, China
| |
Collapse
|
2
|
Alonso-Vante N. Parameters Affecting the Fuel Cell Reactions on Platinum Bimetallic Nanostructures. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
3
|
Smiljanić M, Srejić I, Georgijević JP, Maksić A, Bele M, Hodnik N. Recent progress in the development of advanced support materials for electrocatalysis. Front Chem 2023; 11:1304063. [PMID: 38025069 PMCID: PMC10665529 DOI: 10.3389/fchem.2023.1304063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Electrocatalytic materials are pivotal for clean chemical production and energy conversion in devices like electrolyzers and fuel cells. These materials usually consist of metallic nanoparticles which serve as active reaction sites, and support materials which provide high surface area, conductivity and stability. When designing novel electrocatalytic composites, the focus is often on the metallic sites, however, the significance of the support should not be overlooked. Carbon materials, valued for their conductivity and large surface area, are commonly used as support in benchmark electrocatalysts. However, using alternative support materials instead of carbon can be beneficial in certain cases. In this minireview, we summarize recent advancements and key directions in developing novel supports for electrocatalysis, encompassing both carbon and non-carbon materials.
Collapse
Affiliation(s)
- M. Smiljanić
- Department of Materials Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
| | - I. Srejić
- Department of Atomic Physics, Institute for Nuclear Sciences Vinča, University of Belgrade, Belgrade, Serbia
| | - J. P. Georgijević
- Department of Atomic Physics, Institute for Nuclear Sciences Vinča, University of Belgrade, Belgrade, Serbia
| | - A. Maksić
- Department of Atomic Physics, Institute for Nuclear Sciences Vinča, University of Belgrade, Belgrade, Serbia
| | - M. Bele
- Department of Materials Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
| | - N. Hodnik
- Department of Materials Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
4
|
Liu P, Sivakov V. Tin/Tin Oxide Nanostructures: Formation, Application, and Atomic and Electronic Structure Peculiarities. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2391. [PMID: 37686899 PMCID: PMC10490065 DOI: 10.3390/nano13172391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
For a very long period, tin was considered one of the most important metals for humans due to its easy access in nature and abundance of sources. In the past, tin was mainly used to make various utensils and weapons. Today, nanostructured tin and especially its oxide materials have been found to possess many characteristic physical and chemical properties that allow their use as functional materials in various fields such as energy storage, photocatalytic process, gas sensors, and solar cells. This review discusses current methods for the synthesis of Sn/SnO2 composite materials in form of powder or thin film, as well as the application of the most advanced characterization tools based on large-scale synchrotron radiation facilities to study their chemical composition and electronic features. In addition, the applications of Sn/SnO2 composites in various fields are presented in detail.
Collapse
Affiliation(s)
- Poting Liu
- Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein Str. 9, 07745 Jena, Germany;
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Vladimir Sivakov
- Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein Str. 9, 07745 Jena, Germany;
| |
Collapse
|
5
|
Xian L, Ma J, Li W, Yang Y, Gao X, Xi B, Tian X. Synthesis of Ultrafine Platinum Nanocatalysts by Ice‐photochemical Method and Their Application in Catalytic Degradation of 4‐nitrophenol. ChemistrySelect 2022. [DOI: 10.1002/slct.202204071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Liang Xian
- Department of Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composites and Biomass in Universities of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, Institution of Chemical Engineering Northwest Minzu University Lanzhou 730124 China
| | - Jing Ma
- Department of Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composites and Biomass in Universities of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, Institution of Chemical Engineering Northwest Minzu University Lanzhou 730124 China
| | - Wei Li
- Department of Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composites and Biomass in Universities of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, Institution of Chemical Engineering Northwest Minzu University Lanzhou 730124 China
| | - Yanzhong Yang
- Department of Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composites and Biomass in Universities of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, Institution of Chemical Engineering Northwest Minzu University Lanzhou 730124 China
| | - Xu Gao
- Department of Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composites and Biomass in Universities of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, Institution of Chemical Engineering Northwest Minzu University Lanzhou 730124 China
| | - Bei Xi
- Department of Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composites and Biomass in Universities of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, Institution of Chemical Engineering Northwest Minzu University Lanzhou 730124 China
| | - Xiaoxia Tian
- Department of Key Laboratory of Environment-Friendly Composites of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composites and Biomass in Universities of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, Institution of Chemical Engineering Northwest Minzu University Lanzhou 730124 China
| |
Collapse
|
6
|
Tu S, Ning Z, Duan X, Zhao X, Chang L. Efficient electrochemical hydrogen peroxide generation using TiO2/rGO catalyst and its application in electro-Fenton degradation of methyl orange. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Ribeiro JYC, dos Anjos AV, Neto ESV, Aristides SS, Salazar-Banda GR, Eguiluz KIB. Influence of different carbon and SnO2 ratios on the activity of PtIr/C (SnO2)1 catalysts toward methanol oxidation. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Cong Y, Wang H, Meng F, Dou D, Meng X, Zhao Q, Cao D, Wang Y. One-pot synthesis of NiPt core–shell nanoparticles toward efficient oxygen reduction reaction. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Rehman KU, Gouda M, Zaman U, Tahir K, Khan SU, Saeed S, Khojah E, El-Beltagy A, Zaky AA, Naeem M, Khan MI, Khattak NS. Optimization of Platinum Nanoparticles (PtNPs) Synthesis by Acid Phosphatase Mediated Eco-Benign Combined with Photocatalytic and Bioactivity Assessments. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1079. [PMID: 35407197 PMCID: PMC9000267 DOI: 10.3390/nano12071079] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 12/17/2022]
Abstract
Noble metal nanoparticles (NMNPs) are viable alternative green sources compared to the chemical available methods in several approach like Food, medical, biotechnology, and textile industries. The biological synthesis of platinum nanoparticles (PtNPs), as a strong photocatalytic agent, has proved as more effective and safer method. In this study, PtNPs were synthesized at four different temperatures (25 °C, 50 °C, 70 °C, and 100 °C). PtNPs synthesized at 100 °C were smaller and exhibited spherical morphology with a high degree of dispersion. A series of physicochemical characterizations were applied to investigate the synthesis, particle size, crystalline nature, and surface morphology of PtNPs. The biosynthesized PtNPs were tested for the photodegradation of methylene blue (MB) under visible light irradiations. The results showed that PtNPs exhibited remarkable photocatalytic activity by degrading 98% of MB only in 40 min. The acid phosphatase mediated PtNPs showed strong bacterial inhibition efficiency against S. aureus and E. coli. Furthermore, it showed high antioxidant activity (88%) against 1,1-diphenyl-2-picryl-hydrazil (DPPH). In conclusion, this study provided an overview of the applications of PtNPs in food chemistry, biotechnology, and textile industries for the deterioration of the natural and synthetic dyes and its potential application in the suppression of pathogenic microbes of the biological systems. Thus, it could be used as a novel approach in the food microbiology, biomedical and environmental applications.
Collapse
Affiliation(s)
- Khalil ur Rehman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan; (K.u.R.); (U.Z.); (K.T.)
| | - Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition and Food Science, Food Industries and Nutrition Research Institute, National Research Centre, Giza 12422, Egypt
| | - Umber Zaman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan; (K.u.R.); (U.Z.); (K.T.)
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan; (K.u.R.); (U.Z.); (K.T.)
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Abbottabad 22080, Pakistan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
| | - Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
| | - Ebtihal Khojah
- Department of Food Science and Nutrition, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.K.); (A.E.-B.)
| | - Alaa El-Beltagy
- Department of Food Science and Nutrition, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.K.); (A.E.-B.)
| | - Ahmed A. Zaky
- Department of Food Technology, Food Industries and Nutrition Research Institute, National Research Centre, Giza 12422, Egypt;
| | - Mohamed Naeem
- Nutrition and Food Science of Ain Shams University Specialized Hospital, Ain Shams University, Cairo 11566, Egypt;
| | - Muhammad Imran Khan
- Department of Biomedical Sciences, Pak-Austria Fachhochschule, Institute of Applied Sciences and Technology, Mang Haripur 22620, Pakistan;
| | - Noor Saeed Khattak
- Center for Materials Science, Islamia College University, Peshawar 25120, Pakistan;
| |
Collapse
|
10
|
Hosny M, Fawzy M, El-Fakharany EM, Omer AM, El-Monaem EMA, Khalifa RE, Eltaweil AS. Biogenic synthesis, characterization, antimicrobial, antioxidant, antidiabetic, and catalytic applications of platinum nanoparticles synthesized from Polygonum salicifolium leaves. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:106806. [DOI: 10.1016/j.jece.2021.106806] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
|
11
|
Eltaweil AS, Fawzy M, Hosny M, Abd El-Monaem EM, Tamer TM, Omer AM. Green synthesis of platinum nanoparticles using Atriplex halimus leaves for potential antimicrobial, antioxidant, and catalytic applications. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103517] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
12
|
Liu Q, Ranocchiari M, van Bokhoven JA. Catalyst overcoating engineering towards high-performance electrocatalysis. Chem Soc Rev 2021; 51:188-236. [PMID: 34870651 DOI: 10.1039/d1cs00270h] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clean and sustainable energy needs the development of advanced heterogeneous catalysts as they are of vital importance for electrochemical transformation reactions in renewable energy conversion and storage devices. Advances in nanoscience and material chemistry have afforded great opportunities for the design and optimization of nanostructured electrocatalysts with high efficiency and practical durability. In this review article, we specifically emphasize the synthetic methodologies for the versatile surface overcoating engineering reported to date for optimal electrocatalysts. We discuss the recent progress in the development of surface overcoating-derived electrocatalysts potentially applied in polymer electrolyte fuel cells and water electrolyzers by correlating catalyst intrinsic structures with electrocatalytic properties. Finally, we present the opportunities and perspectives of surface overcoating engineering for the design of advanced (electro)catalysts and their deep exploitation in a broad scope of applications.
Collapse
Affiliation(s)
- Qiang Liu
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland. .,Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Marco Ranocchiari
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland. .,Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| |
Collapse
|
13
|
Carbon-Supported Pt-SnO2 Catalysts for Oxygen Reduction Reaction over a Wide Temperature Range: Rotating Disk Electrode Study. Catalysts 2021. [DOI: 10.3390/catal11121469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pt/C and Pt/x-SnO2/C catalysts (where x is mass content of SnO2) were synthesized using a polyol method. Their kinetic properties towards oxygen reduction reaction were studied by a rotating disk electrode (RDE) technique in a temperature range from 1 to 50 °C. The SnO2 content of catalyst samples was 5 and 10 wt.%. A quick evaluation of the catalyst activity, electrochemical behavior and average number of transferred electrons were performed using the RDE technique. It has been shown that the use of x-SnO2 (through modification of the carbon support) in a binary system together with Pt does not reduce the catalyst activity in the temperature range of 1–30 °C. The temperature rising up to 50 °C resulted in composite catalyst activity reduction at about 30%.
Collapse
|
14
|
High oxygen reduction reaction activity and durability of Pt catalyst photo-deposited on SnO2-coated and uncoated multi-walled carbon nanotubes. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Chao G, Zhang L, Xue T, Tian J, Fan W, Liu T. Lattice-strain and electron-density modulation of palladium nanocatalysts for highly efficient oxygen reduction. J Colloid Interface Sci 2021; 602:159-167. [PMID: 34119755 DOI: 10.1016/j.jcis.2021.05.177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/26/2022]
Abstract
Designing efficient electrocatalysts for the oxygen reduction reaction (ORR) is crucial to enhance the energy efficiencies of metal-air batteries and fuel cells. Palladium (Pd) catalysts show great potential due to their high intrinsic activity towards ORR but suffer from inferior durability. Here, we aim to employ tin oxide (SnO2) supports to tailor the lattice strain and electron density of Pd catalysts to enhance their ORR performance. By using electrospinning and solvothermal techniques, a hierarchical Pd/SnO2 hybrid catalyst was facilely synthesized with Pd nanoparticles anchored onto both the inside and outside walls of nanotube-like SnO2 supports. Owing to the SnO2 supports and the endowing metal-support interactions, tensile-strain and electron-rich features were both verified for the Pd nanoparticles in the Pd/SnO2 catalyst. In comparison, no such features were found for the Pd nanoparticles in the Pd/C catalyst. As a consequence, the Pd/SnO2 hybrid catalyst exhibits 2.5-times higher mass activity than the Pd/C catalyst and greatly improved durability with a current decay of 4% loss over 50 h compared with that (18%) of the Pd/C catalyst.
Collapse
Affiliation(s)
- Guojie Chao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, PR China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, PR China
| | - Longsheng Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, PR China.
| | - Tiantian Xue
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, PR China
| | - Jing Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, PR China
| | - Wei Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, PR China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, PR China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
16
|
Hussain S, Kongi N, Treshchalov A, Kahro T, Rähn M, Merisalu M, Tamm A, Sammelselg V, Tammeveski K. Enhanced oxygen reduction reaction activity and durability of Pt nanoparticles deposited on graphene-coated alumina nanofibres. NANOSCALE ADVANCES 2021; 3:2261-2268. [PMID: 36133775 PMCID: PMC9417899 DOI: 10.1039/d1na00007a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/19/2021] [Indexed: 05/05/2023]
Abstract
The oxygen reduction reaction (ORR) activity and stability of Pt catalysts deposited on graphene-coated alumina nanofibres (GCNFs) were investigated. The GCNFs were fabricated by catalyst-free chemical vapour deposition. Pt nanoparticles (NPs) were deposited on the nanofibres by sonoelectrochemical and plasma-assisted synthesis methods. Scanning and transmission electron microscopy analyses revealed different surface morphologies of the prepared Pt catalysts, depending on the synthesis procedure. Sonoelectrochemical deposition resulted in a uniform distribution of smaller Pt NPs on the support surface, while plasma-assisted synthesis, along with well-dispersed smaller Pt NPs, led to particle agglomeration at certain nucleation sites. Further details about the surface features were obtained from cyclic voltammetry and CO stripping experiments in 0.1 M HClO4 solution. Rotating disk electrode investigations revealed that the Pt/GCNF catalyst is more active towards the ORR in acid media than the commercial Pt/C (20 wt%). The prepared catalyst also showed significantly higher durability than commercial Pt/C, with no change in the half-wave potential after 10 000 potential cycles.
Collapse
Affiliation(s)
- Sajid Hussain
- Institute of Chemistry, University of Tartu Ravila 14a 50411 Tartu Estonia +372 7375168
| | - Nadezda Kongi
- Institute of Chemistry, University of Tartu Ravila 14a 50411 Tartu Estonia +372 7375168
| | - Alexey Treshchalov
- Institute of Physics, University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Tauno Kahro
- Institute of Physics, University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Mihkel Rähn
- Institute of Physics, University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Maido Merisalu
- Institute of Physics, University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Aile Tamm
- Institute of Physics, University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Väino Sammelselg
- Institute of Physics, University of Tartu W. Ostwald Str. 1 50411 Tartu Estonia
| | - Kaido Tammeveski
- Institute of Chemistry, University of Tartu Ravila 14a 50411 Tartu Estonia +372 7375168
| |
Collapse
|
17
|
Zhang Q, Li W, Zhao F, Xu C, Fan G, Liu Q, Zhang X, Zhang X. Electrochemical sandwich-type thrombin aptasensor based on silver nanowires& particles decorated electrode and the signal amplifier of Pt loaded hollow zinc ferrite. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Wang H, Sun S, Mohamedi M. Synthesis of free-standing ternary Rh-Pt-SnO 2-carbon nanotube nanostructures as a highly active and robust catalyst for ethanol oxidation. RSC Adv 2020; 10:45149-45158. [PMID: 35516282 PMCID: PMC9058560 DOI: 10.1039/d0ra10030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 11/21/2022] Open
Abstract
The rational design of durable materials is an important issue for improving the performance of electrocatalysts towards the ethanol oxidation reaction (EOR). In this work, binderless thin nanostructured layers of SnO2, Pt, Rh, bilayers of Pt/SnO2, Rh/Pt and tri-layers of Rh (ca. 10 nm thickness)/PtSnO2 are directly grown by pulsed laser deposition onto carbon nanotubes (CNTs). SEM analysis shows that CNTs are perfectly coated with the catalysts. The onset potentials of the CO stripping and EOR indicate that Rh/Pt/SnO2 is the most active for the CO and the EOR. The incorporation of the CNTs in the catalyst layer is outstandingly beneficial to both the catalytic current activity and the durability. Indeed Rh/Pt/SnO2/CNT delivers mass activity as high as 213.42 mA mg-1 Pt. Moreover, Rh/Pt/SnO2/CNT demonstrates not only the lowest poisoning rate (by intermediate species, such as adsorbed CO) but also the highest durability current of 132.17 mA mg-1 Pt far superior to CNT-free Rh/Pt/SnO2/CP (58.33 mA mg-1 Pt). XPS shows that SnO2, Pt and Rh are all present at the surface of Rh/Pt/SnO2/CNT, the presence of two oxophilic materials like SnO2 and Rh, implies an earlier source of OHads-species, which facilitates the oxidation of CO and assuming a second contribution from Rh is to enhance the cleavage of the C-C bond for the complete oxidation of ethanol. The 3D porous and binderless structure, the low amount of the noble catalyst, the excellent electroactivity and durability of the Rh5/PtSnO2/CNT/CP composite represents an important step in advancing its use as an anode in commercial applications in DEFC.
Collapse
Affiliation(s)
- Haixia Wang
- Énergie, Matériaux et Télécommunications (EMT), Institut National de la Recherche Scientifique (INRS) 1650 Boulevard Lionel Boulet, Varennes Quebec J3X 1S2 Canada
| | - Shuhui Sun
- Énergie, Matériaux et Télécommunications (EMT), Institut National de la Recherche Scientifique (INRS) 1650 Boulevard Lionel Boulet, Varennes Quebec J3X 1S2 Canada
| | - Mohamed Mohamedi
- Énergie, Matériaux et Télécommunications (EMT), Institut National de la Recherche Scientifique (INRS) 1650 Boulevard Lionel Boulet, Varennes Quebec J3X 1S2 Canada
| |
Collapse
|
19
|
Kang S, Fan Xia, Zhuofeng Hu, Hu W, She Y, Wang L, Fu X, Lu W. Platinum nanoparticles with TiO2–skin as a durable catalyst for photoelectrochemical methanol oxidation and electrochemical oxygen reduction reactions. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Bimetallic PdZn nanoparticles for oxygen reduction reaction in alkaline medium: The effects of surface structure. J Catal 2020. [DOI: 10.1016/j.jcat.2019.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
On the Influence of Composition and Structure of Carbon-Supported Pt-SnO2 Hetero-Clusters onto Their Electrocatalytic Activity and Durability in PEMFC. Catalysts 2019. [DOI: 10.3390/catal9100803] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A detailed study of the structure, morphology and electrochemical properties of Pt/C and Pt/x-SnO2/C catalysts synthesized using a polyol method has been provided. A series of catalysts supported on the SnO2-modified carbon was synthesized and studied by various methods including transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electrochemical methods, and fuel cell testing. The SnO2 content varies from 5 to 40 wt %. The TEM images, XRD and XPS analysis suggested the Pt-SnO2 hetero-clusters formation. The SnO2 content of ca. 10% ensures an optimal catalytic layer structure and morphology providing uniform distribution of Pt-SnO2 clusters over the carbon support surface. Pt/10wt %-SnO2/C catalyst demonstrates increased activity and durability toward the oxygen reduction reaction (ORR) in course of accelerated stress testing due to the high stability of SnO2 and its interaction with Pt. The polymer electrolyte membrane fuel cell current–voltage performance of the Pt/10wt %-SnO2/C is comparable with those of Pt/C, however, higher durability is expected.
Collapse
|