1
|
Rimboud M, Etcheverry L, Barakat M, Achouak W, Bergel A, Délia ML. Hypersaline microbial fuel cell equipped with an oxygen-reducing microbial cathode. BIORESOURCE TECHNOLOGY 2021; 337:125448. [PMID: 34320736 DOI: 10.1016/j.biortech.2021.125448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Microbial anodes and oxygen reducing microbial cathodes were designed separately under constant polarization at + 0.1 V/SCE in a hypersaline medium (NaCl 45 g/L). They were then associated to design two-compartment microbial fuel cells (MFCs). These MFCs produced up to 209 ± 24 mW m-2 during a week. This was the first demonstration that hypersaline MFCs equipped with microbial cathodes can produce power density at this level. Desulfuromonas sp. were confirmed to be key species of the anodes. The efficiency of the cathodes was linked to the development of a redox system centred at + 0.2 V/SCE and to the presence of Gammaproteobacteria (Alteromonadales and Oceanospirillales), especially an unclassified order phylogenetically linked to the genus Thioalobacter. Comparing the different performance of the four MFCs with the population analyses suggested that polarization at + 0.1 V/SCE should be maintained longer to promote the growth of Thioalobacter on the cathode and thus increase the MFC performance.
Collapse
Affiliation(s)
- Mickaël Rimboud
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 4 Allée Emile Monso, 31432 Toulouse, France
| | - Luc Etcheverry
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 4 Allée Emile Monso, 31432 Toulouse, France
| | - Mohamed Barakat
- Lab of Microbial Ecology of the Rhizosphere (LEMIRE), BIAM, UMR 7265, CEA-CNRS-Aix Marseille University, CEA Cadarache, 13108 Saint Paul Lez Durance, France
| | - Wafa Achouak
- Lab of Microbial Ecology of the Rhizosphere (LEMIRE), BIAM, UMR 7265, CEA-CNRS-Aix Marseille University, CEA Cadarache, 13108 Saint Paul Lez Durance, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 4 Allée Emile Monso, 31432 Toulouse, France
| | - Marie-Line Délia
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 4 Allée Emile Monso, 31432 Toulouse, France.
| |
Collapse
|
2
|
Chinnaraj G, Priya Ponnaiah G. Sustainable Electricity Generation from Continuous Microbial Fuel Cells. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ganesh Chinnaraj
- Anna University Department of Chemical Engineering A.C.College of Technology 600025 Chennai India
| | - Gomathi Priya Ponnaiah
- Anna University Department of Chemical Engineering A.C.College of Technology 600025 Chennai India
| |
Collapse
|
3
|
Gaffney EM, Simoska O, Minteer SD. The Use of Electroactive Halophilic Bacteria for Improvements and Advancements in Environmental High Saline Biosensing. BIOSENSORS-BASEL 2021; 11:bios11020048. [PMID: 33673343 PMCID: PMC7917972 DOI: 10.3390/bios11020048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/20/2023]
Abstract
Halophilic bacteria are remarkable organisms that have evolved strategies to survive in high saline concentrations. These bacteria offer many advances for microbial-based biotechnologies and are commonly used for industrial processes such as compatible solute synthesis, biofuel production, and other microbial processes that occur in high saline environments. Using halophilic bacteria in electrochemical systems offers enhanced stability and applications in extreme environments where common electroactive microorganisms would not survive. Incorporating halophilic bacteria into microbial fuel cells has become of particular interest for renewable energy generation and self-powered biosensing since many wastewaters can contain fluctuating and high saline concentrations. In this perspective, we highlight the evolutionary mechanisms of halophilic microorganisms, review their application in microbial electrochemical sensing, and offer future perspectives and directions in using halophilic electroactive microorganisms for high saline biosensing.
Collapse
|
4
|
Yu D, Fang Y, Liu L, He J, Han X, Yu H, Dong S. Fabrication of a Novel, Cost-Effective Double-Sided Indium Tin Oxide-Based Nanoribbon Electrode and Its Application of Acute Toxicity Detection in Water. ACS Sens 2020; 5:3923-3929. [PMID: 33305577 DOI: 10.1021/acssensors.0c01566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microelectrode plays a crucial role in developing a rapid biosensor for detecting toxicity in water. In this study, a nanoribbon electrode (NRE) with amplified microelectrode signal was successfully prepared by electrodepositing 2-allylphenol on a double-sided indium tin oxide glass. The NRE provided a simple mean for obtaining large steady-state current response. Its advantages were discussed by contrasting the toxicity detection of 3,5-dichlorophenol (DCP) with single microelectrode, microelectrode array, and millimeter electrode as working electrodes in which potassium ferricyanide (K3[Fe(CN)6]) was adopted as a mediator, and Escherichia coli was selected as bioreceptor. At a constant potential of 450 mV, the current reached a steady state within 10 s. The biosensor was constructed using the NRE as working electrode, and its feasibility was verified by determining the toxicity of DCP. A 50% inhibitory concentration (IC50) of 3.01 mg/L was obtained by analyzing the current responses of different concentrations of DCP within 1 h. These results exhibited that the proposed method based on the as-prepared NRE was a rapid, sensitive, and cost-effective way for toxicity detection in water.
Collapse
Affiliation(s)
- Dengbin Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun, Jilin 130102, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Wuhan University), Ministry of Education, Wuhan, Hubei 430072, P. R. China
| | - Youxing Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
| | - Ling Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
| | - Jingting He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
| | - Xuerong Han
- School of Life Science and Technology, Changchun University Science and Technology, Changchun, Jilin 130022, P. R. China
| | - Hongwen Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun, Jilin 130102, P. R. China
- School of Life Science and Technology, Changchun University Science and Technology, Changchun, Jilin 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
5
|
Lazzarini Behrmann IC, Grattieri M, Minteer SD, Ramirez SA, Vullo DL. Online self-powered Cr(VI) monitoring with autochthonous Pseudomonas and a bio-inspired redox polymer. Anal Bioanal Chem 2020; 412:6449-6457. [DOI: 10.1007/s00216-020-02620-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022]
|
6
|
|
7
|
Gaffney EM, Grattieri M, Beaver K, Pham J, McCartney C, Minteer SD. Unveiling salinity effects on photo-bioelectrocatalysis through combination of bioinformatics and electrochemistry. Electrochim Acta 2020; 337. [PMID: 32308212 DOI: 10.1016/j.electacta.2020.135731] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Little is known about the adaptation strategies utilized by photosynthetic microorganisms to cope with salinity changes happening in the environment, and the effects on microbial electrochemical technologies. Herein, bioinformatics analysis revealed a metabolism shift in Rhodobacter capsulatus resulting from salt stress, with changes in gene expression allowing accumulation of compatible solutes to balance osmotic pressure, together with the up-regulation of the nitrogen fixation cycle, an electron sink of the photosynthetic electron transfer chain. Using the transcriptome evidence of hindered electron transfer in the photosynthetic electron transport chain induced by adaption to salinity, increased understanding of photo-bioelectrocatalysis under salt stress is achieved. Accumulation of glycine-betaine allows immediate tuning of salinity tolerance but does not provide cell stabilization, with a 40 ± 20% loss of photo-bioelectrocatalysis in a 60 min time scale. Conversely, exposure to or inducing the expression of the Rhodobacter capsulatus gene transfer agent tunes salinity tolerance and increases cell stability. This work provides a proof of concept for the combination of bioinformatics and electrochemical tools to investigate microbial electrochemical systems, opening exciting future research opportunities.
Collapse
Affiliation(s)
- Erin M Gaffney
- Department of Chemistry, University of Utah, 315 S 1400 E Room 2020, Salt Lake City, 84112, Utah, USA
| | - Matteo Grattieri
- Department of Chemistry, University of Utah, 315 S 1400 E Room 2020, Salt Lake City, 84112, Utah, USA
| | - Kevin Beaver
- Department of Chemistry, University of Utah, 315 S 1400 E Room 2020, Salt Lake City, 84112, Utah, USA
| | - Jennie Pham
- Department of Chemistry, University of Utah, 315 S 1400 E Room 2020, Salt Lake City, 84112, Utah, USA
| | - Caitlin McCartney
- Department of Chemistry, University of Utah, 315 S 1400 E Room 2020, Salt Lake City, 84112, Utah, USA.,Departments of Chemistry, Brown University, 324 Brook Street Box H, Providence, 02912, Rhode Island, USA
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 S 1400 E Room 2020, Salt Lake City, 84112, Utah, USA
| |
Collapse
|
8
|
Grattieri M. Purple bacteria photo-bioelectrochemistry: enthralling challenges and opportunities. Photochem Photobiol Sci 2020; 19:424-435. [DOI: 10.1039/c9pp00470j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Perspective of research directions exploring purple bacteria photo-bioelectrochemistry: from harvesting photoexcited electrons to bioelectrochemical systems development.
Collapse
|