1
|
Xiong S, Weng S, Tang Y, Qian L, Xu Y, Li X, Lin H, Xu Y, Jiao Y, Chen J. Mo-doped Co 3O 4 ultrathin nanosheet arrays anchored on nickel foam as a bi-functional electrode for supercapacitor and overall water splitting. J Colloid Interface Sci 2021; 602:355-366. [PMID: 34139533 DOI: 10.1016/j.jcis.2021.06.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/30/2022]
Abstract
Simple preparation, favorable price and environmental protection have been a long-term challenge in the field of electrochemistry. Herein, we studied and prepared a bifunctional Mo-doped Co3O4 ultrathin nanosheets, which has been validated as an effective binder-free electrode material for electrocatalytic water splitting and supercapacitors. The material has a large specific surface area, high electrical conductivity and exposure to more active sites, breaking down the limited performance and range of use of transition metal oxides. Benefiting from intriguing ultrathin property and conductivity, OER and HER process of 0.4Mo-Co3O4 have a small Tafel slope of 83.7 and 98 mV dec-1, respectively. The current density at 10 mA cm-2 show a low overpotential of 315 and 79 mV and significant stability. The water electrolytic device requires a potential of 1.64 V to reach 10 mA cm-2, and the potential change is negligible after 12 h of continuous electrolysis. In addition, the manifest improved electrochemical performance of 0.3Mo-Co3O4 as supercapacitor electrode material shows high areal capacitance 2815 mF cm-2 at 1 mA cm-2, excellent rate performance (85% at 10 mA cm-2) and retains 90% of the initial capacitance by cycling 5000 at a current density of 10 mA cm-2. Moreover, 0.3Mo-Co3O4||0.3Mo-Co3O4 symmetrical supercapacitor has a maximum volumetric energy density of 1.25 mW h cm-3 at a power density of 7.1 mW cm-3 and superior cycle life. The influence of doping on electrochemical performance was studied by changing the content of doped metal ions, which is of great significance for the exploration of supercapacitor and electrocatalytic hydrolysis of bifunctional electrode materials.
Collapse
Affiliation(s)
- Shanshan Xiong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Shuting Weng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yu Tang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lei Qian
- Zhejiang Anke Environmental Protection Technology Co., Ltd, China
| | - Yanqiu Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xianfa Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yang Jiao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jianrong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
2
|
Controlled synthesis of a high-performance α-NiS/Ni3S4 hybrid by a binary synergy of sulfur sources for supercapacitor. J Colloid Interface Sci 2021; 581:56-65. [DOI: 10.1016/j.jcis.2020.07.129] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/15/2020] [Accepted: 07/26/2020] [Indexed: 01/13/2023]
|
3
|
Ning J, Xia M, Wang D, Feng X, Zhou H, Zhang J, Hao Y. Superior Pseudocapacitive Storage of a Novel Ni 3Si 2/NiOOH/Graphene Nanostructure for an All-Solid-State Supercapacitor. NANO-MICRO LETTERS 2020; 13:2. [PMID: 34138217 PMCID: PMC8187555 DOI: 10.1007/s40820-020-00527-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/28/2020] [Indexed: 05/20/2023]
Abstract
Recent developments in the synthesis of graphene-based structures focus on continuous improvement of porous nanostructures, doping of thin films, and mechanisms for the construction of three-dimensional architectures. Herein, we synthesize creeper-like Ni3Si2/NiOOH/graphene nanostructures via low-pressure all-solid melting-reconstruction chemical vapor deposition. In a carbon-rich atmosphere, high-energy atoms bombard the Ni and Si surface, and reduce the free energy in the thermodynamic equilibrium of solid Ni-Si particles, considerably catalyzing the growth of Ni-Si nanocrystals. By controlling the carbon source content, a Ni3Si2 single crystal with high crystallinity and good homogeneity is stably synthesized. Electrochemical measurements indicate that the nanostructures exhibit an ultrahigh specific capacity of 835.3 C g-1 (1193.28 F g-1) at 1 A g-1; when integrated as an all-solid-state supercapacitor, it provides a remarkable energy density as high as 25.9 Wh kg-1 at 750 W kg-1, which can be attributed to the free-standing Ni3Si2/graphene skeleton providing a large specific area and NiOOH inhibits insulation on the electrode surface in an alkaline solution, thereby accelerating the electron exchange rate. The growth of the high-performance composite nanostructure is simple and controllable, enabling the large-scale production and application of microenergy storage devices.
Collapse
Affiliation(s)
- Jing Ning
- The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an, 710071, People's Republic of China.
- Shaanxi Joint Key Laboratory of Graphene, Xidian University, Xi'an, 710071, People's Republic of China.
| | - Maoyang Xia
- The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an, 710071, People's Republic of China
- Shaanxi Joint Key Laboratory of Graphene, Xidian University, Xi'an, 710071, People's Republic of China
| | - Dong Wang
- The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an, 710071, People's Republic of China.
- Shaanxi Joint Key Laboratory of Graphene, Xidian University, Xi'an, 710071, People's Republic of China.
| | - Xin Feng
- The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an, 710071, People's Republic of China
- Shaanxi Joint Key Laboratory of Graphene, Xidian University, Xi'an, 710071, People's Republic of China
| | - Hong Zhou
- The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an, 710071, People's Republic of China
- Shaanxi Joint Key Laboratory of Graphene, Xidian University, Xi'an, 710071, People's Republic of China
| | - Jincheng Zhang
- The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an, 710071, People's Republic of China
- Shaanxi Joint Key Laboratory of Graphene, Xidian University, Xi'an, 710071, People's Republic of China
| | - Yue Hao
- The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an, 710071, People's Republic of China
- Shaanxi Joint Key Laboratory of Graphene, Xidian University, Xi'an, 710071, People's Republic of China
| |
Collapse
|
4
|
Wang N, Hou W, Chang Y, Song H, Li H, Li Y, Han G. Binder-free hydrogen storage composite Co9S8/rGO: A prospective anode for flexible energy storage device with high energy density. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
5
|
Djara R, Holade Y, Merzouki A, Lacour MA, Masquelez N, Flaud V, Cot D, Rebiere B, van der Lee A, Cambedouzou J, Huguet P, Tingry S, Cornu D. Nanostructured Carbon-Nitrogen-Sulfur-Nickel Networks Derived From Polyaniline as Bifunctional Catalysts for Water Splitting. Front Chem 2020; 8:385. [PMID: 32509726 PMCID: PMC7251167 DOI: 10.3389/fchem.2020.00385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/14/2020] [Indexed: 11/13/2022] Open
Abstract
The development of reliable production routes for sustainable hydrogen (H2), which is an essential feedstock for industrial processes and energy carrier for fuel cells, is needed. It appears to be an unavoidable alternative to significantly reduce the dependence on conventional energy sources based on fossil fuels without increasing the atmospheric CO2 levels. Among the different power-to-X scenarios to access high purity H2, the electrochemical approach based on electrolysis looks to be a promising sustainable solution at both the small and large industrial scales. However, the practical realization of this important opportunity faces several challenges, including the efficient design of cost-effective catalytic materials to be used as a cathode with improved intrinsic and durable activity. In this contribution, we report the design and development of efficient nanostructured catalysts for the electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in aqueous media, whereby noble metal-free elements are embedded in a matrix of a conducting polymer, polyaniline (PANI). To increase the electrical conductivity and further the electrocatalytic ability toward HER of the chemically polymerized PANI in the presence of nickel (II) salt (nitrate), the PANI-based materials have first been stabilized at a mild temperature of 250-350°C in air and then carbonized at 800-1,000°C under nitrogen gas to convert the chemical species into nitrogen, sulfur, nickel, and carbon nanostructured networks (CNNs). Different physicochemical (TGA-DSC, Raman spectroscopy, XRD, SEM, EDX, ICP, CHNS, BET, and XPS) and electrochemical (voltammetry and electrochemical impedance spectrometry) methods have been integrated to characterize the as-synthesized CNNs materials and interrogate the relationship of material-to-performance. It has been found that those synthesis conditions allow for the substantial increase of the electrocatalytic performance toward HER and OER in alkaline media in terms of the onset potential and charge transfer resistance and overpotential at the specific activity of 10 milliamps per square centimeter, thus ranking the present materials among the most efficient noble metal-free catalysts and making them possible candidates for integration in practical low-energy consumption alkaline electrolyzers.
Collapse
Affiliation(s)
- Razik Djara
- Laboratoire de Physico-Chimie des Hauts Polymères (LPCHP), Université Ferhat Abbas, Sétif, Algeria.,Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Yaovi Holade
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Abdelhafid Merzouki
- Laboratoire de Physico-Chimie des Hauts Polymères (LPCHP), Université Ferhat Abbas, Sétif, Algeria
| | | | - Nathalie Masquelez
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Valerie Flaud
- Institut Charles Gerhardt, ICGM UMR 5253, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Didier Cot
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Bertrand Rebiere
- Institut Charles Gerhardt, ICGM UMR 5253, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Arie van der Lee
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Julien Cambedouzou
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Patrice Huguet
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Sophie Tingry
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - David Cornu
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| |
Collapse
|
6
|
Cui K, Fan J, Li S, Khadidja MF, Wu J, Wang M, Lai J, Jin H, Luo W, Chao Z. Three dimensional Ni 3S 2 nanorod arrays as multifunctional electrodes for electrochemical energy storage and conversion applications. NANOSCALE ADVANCES 2020; 2:478-488. [PMID: 36133976 PMCID: PMC9417280 DOI: 10.1039/c9na00633h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/22/2019] [Indexed: 05/17/2023]
Abstract
The increasing demand for energy and environmental protection has stimulated intensive interest in fundamental research and practical applications. Nickel dichalcogenides (Ni3S2, NiS, Ni3Se2, NiSe, etc.) are promising materials for high-performance electrochemical energy storage and conversion applications. Herein, 3D Ni3S2 nanorod arrays are fabricated on Ni foam by a facile solvothermal route. The optimized Ni3S2/Ni foam electrode displays an areal capacity of 1602 µA h cm-2 at 5 mA cm-2, excellent rate capability and cycling stability. Besides, 3D Ni3S2 nanorod arrays as electrode materials exhibit outstanding performances for the overall water splitting reaction. In particular, the 3D Ni3S2 nanorod array electrode is shown to be a high-performance water electrolyzer with a cell voltage of 1.63 V at a current density of 10 mA cm-2 for overall water splitting. Therefore, the results demonstrate a promising multifunctional 3D electrode material for electrochemical energy storage and conversion applications.
Collapse
Affiliation(s)
- Kexin Cui
- College of Materials Science and Engineering, Changsha University of Science and Technology Changsha Hunan 410114 China
| | - Jincheng Fan
- College of Materials Science and Engineering, Changsha University of Science and Technology Changsha Hunan 410114 China
| | - Songyang Li
- College of Materials Science and Engineering, Changsha University of Science and Technology Changsha Hunan 410114 China
| | - Moukaila Fatiya Khadidja
- College of Materials Science and Engineering, Changsha University of Science and Technology Changsha Hunan 410114 China
| | - Jianghong Wu
- College of Materials Science and Engineering, Changsha University of Science and Technology Changsha Hunan 410114 China
- College of Health Science and Environmental Engineering, Shenzhen Technology University Shenzhen Guangdong 518118 China
| | - Mingyu Wang
- College of Materials Science and Engineering, Changsha University of Science and Technology Changsha Hunan 410114 China
| | - Jianxin Lai
- College of Materials Science and Engineering, Changsha University of Science and Technology Changsha Hunan 410114 China
| | - Hongguang Jin
- College of Materials Science and Engineering, Changsha University of Science and Technology Changsha Hunan 410114 China
| | - Wenbin Luo
- College of Materials Science and Engineering, Changsha University of Science and Technology Changsha Hunan 410114 China
| | - Zisheng Chao
- College of Materials Science and Engineering, Changsha University of Science and Technology Changsha Hunan 410114 China
| |
Collapse
|