1
|
Vanoni CR, Goularte RB, Silva Lima AR, Guedes NB, Scheide MR, Bazzo GC, Parreira RLT, Caramori GF, Nagurniak GR, Rosso Dotto ME, Stulzer HK, Jost CL. An alumina-modified glassy carbon electrode: a robust platform for accurate nimodipine detection in pharmaceutical applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2203-2213. [PMID: 39907432 DOI: 10.1039/d4ay01979b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Nimodipine (NMP) is a calcium channel blocker known for maintaining blood perfusion, particularly in the brain. Given its importance and widespread applicability, tracking NMP during industrial processes for both pharmaceutical dosage forms and raw material samples is crucial. This article discusses the use of a glassy carbon electrode (GCE) polished with commercial alumina for NMP determination. Atomic force microscopy (AFM) confirmed the presence of residual alumina on the surface of the GCE, and electrochemically active surface area (EASA) analysis demonstrated an enhancement in the active area. The alumina-polished electrode (GCE/AP) exhibited a superior response for NMP, with voltammograms obtained via differential pulse voltammetry (DPV). In this investigation, we employed density functional theory (DFT) calculations to examine the electrochemical characteristics of NMP from a theoretical standpoint. The geometry was optimized by employing the Generalized Gradient Approximation (GGA) functional, BP86, in conjunction with the Def2-TZVPPPD basis set and D3BJ dispersion corrections. To identify potential sites for oxidation and reduction, Fukui indices and dual descriptors were employed. The results indicate that the nitro group is the most probable site for reduction, whereas the dihydropyridine ring displays a proclivity for electrophilic attack. Regarding electroanalysis, two calibration curves were established through consecutive additions of NMP, with linear ranges of 0.20 to 49.0 μmol L-1 and 2.92 to 13.5 μmol L-1, respectively. The theoretical limits of detection (LOD) and quantification (LOQ) were, respectively, 0.06 μmol L-1 and 0.20 μmol L-1 for the first curve, and 4.0 μmol L-1 and 12.0 μmol L-1 for the second curve. Common constituents in pharmaceutical tablets were tested as potential interferents, and GCE/AP showed acceptable anti-interference ability. NMP was successfully quantified in tablet and raw material samples using the novel electrochemical method and High-Performance Liquid Chromatography (HPLC). Statistical analysis revealed no significant differences between the results. This confirms that the GCE/AP sensor was effectively applied to pharmaceutical samples, consistent with findings reported in the literature.
Collapse
Affiliation(s)
- Caio Raphael Vanoni
- Ampere - Laboratório de Plataformas Eletroquímicas, Departamento de Química, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| | - Rayane Bueno Goularte
- Ampere - Laboratório de Plataformas Eletroquímicas, Departamento de Química, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| | - Adriano Rogério Silva Lima
- Ampere - Laboratório de Plataformas Eletroquímicas, Departamento de Química, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| | - Nicolly Bittencourt Guedes
- NITFAr - Núcleo de Inovação em Tecnologias Farmacêuticas, Departamento de Farmácia, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Marcos Roberto Scheide
- Departamento de Química, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Giovana Carolina Bazzo
- NITFAr - Núcleo de Inovação em Tecnologias Farmacêuticas, Departamento de Farmácia, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Renato L T Parreira
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, 14404-600, Franca, SP, Brazil
| | - Giovanni Finoto Caramori
- Departamento de Química, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Glaucio Régis Nagurniak
- Departamento de Ciências Exatas e Educação, Universidade Federal de Santa Catarina, 89036-002, Blumenau, SC, Brazil
| | - Marta Elisa Rosso Dotto
- LOOSA - Laboratório de Optoeletrônica e Sistemas Anisotrópicos, Departamento de Física, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Hellen Karine Stulzer
- NITFAr - Núcleo de Inovação em Tecnologias Farmacêuticas, Departamento de Farmácia, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Cristiane Luisa Jost
- Ampere - Laboratório de Plataformas Eletroquímicas, Departamento de Química, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
2
|
Voigt M, Dluziak JM, Wellen N, Jaeger M. Mechanistic study of the electrochemical oxidation of fluoroquinolones: Ciprofloxacin, danofloxacin, enoxacin, levofloxacin and lomefloxacin. CHEMOSPHERE 2024; 355:141763. [PMID: 38522672 DOI: 10.1016/j.chemosphere.2024.141763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
The fluoroquinolones ciprofloxacin, danofloxacin, enoxacin, levofloxacin and lomefloxacin, occur in water bodies worldwide and therefore pose a threat to the aquatic environment. Advanced purification procedures, such as electrochemical oxidation, may act as a remedy since they contribute to eliminating contaminants and prevent micropollutants from entering open water bodies. By electrochemical treatment in a micro-flow reactor equipped with a boron-doped diamond (BDD) electrode, the fluoroquinolones were efficiently degraded. A total of 15 new products were identified using high-performance high-resolution chromatography coupled with high-resolution multifragmentation mass spectrometry. The ecotoxicity of the emerging transformation products was estimated through in silico quantitative structure activity relationship analysis. Almost all transformation products were predicted less ecotoxic than the initial compounds. The fluoroquinolone degradation followed three major mechanisms depending on the voltage during the electrochemical oxidation. At approximately 1 V, the reactions started with the elimination of molecular hydrogen from the piperazine moiety. At approx. 1.25 V, methyl and methylene groups were eliminated. At 1.5 V, hydroxyl radicals, generated at the BDD electrode, led to substitution at the piperazine ring. This novel finding of the three reactions depending on voltage contributes to the mechanistic understanding of electrochemical oxidation as potential remedy against fluoroquinolones in the aquatic environment.
Collapse
Affiliation(s)
- Melanie Voigt
- Niederrhein University of Applied Sciences, Department of Chemistry and ILOC, Frankenring 20, D-47798, Krefeld, Germany
| | - Jean-Michel Dluziak
- Niederrhein University of Applied Sciences, Department of Chemistry and ILOC, Frankenring 20, D-47798, Krefeld, Germany
| | - Nils Wellen
- Niederrhein University of Applied Sciences, Department of Chemistry and ILOC, Frankenring 20, D-47798, Krefeld, Germany
| | - Martin Jaeger
- Niederrhein University of Applied Sciences, Department of Chemistry and ILOC, Frankenring 20, D-47798, Krefeld, Germany.
| |
Collapse
|
3
|
Sun Y, Kuang J, Cheng Y, Lin C, Zhang H, Zhang M, Ning F, Hu P. Determination of trace fluoroquinolones in honey and milk based on cyclodextrin modified magnetic metal-organic frameworks solid phase extraction coupled with ultra-high performance liquid chromatography. J Chromatogr A 2024; 1713:464521. [PMID: 37992598 DOI: 10.1016/j.chroma.2023.464521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Long-term intake of animal-derived foods with excessive fluoroquinolones (FQs) will cause damage to human health, so it is critical to establish a feasible approach for sensitive and rapid monitoring of FQs residues. In this study, a new cyclodextrin modified magnetic metal-organic frameworks (Fe3O4@UiO-66-CD) was successfully synthesized by amidation reaction and applied to magnetic solid phase extraction (MSPE) for FQs analysis. The adsorption behavior of Fe3O4@UiO-66-CD was consistent with the pseudo-second-order kinetics and Freundlich isothermal adsorption model, which indicated that the designed material had various interactions on FQs, such as host-guest interaction and π-π interaction. The parameters of MSPE were optimized and the determination method of norfloxacin, enrofloxacin, lomefloxacin and gatifloxacin was established by using MSPE combined with ultra-high performance liquid chromatography (UHPLC) and fluorescence detector (FLD). The method validation results displayed that the detection limits were 0.02-0.09 ng/mL, and the RSDs of intra-day and inter-day precision were less than 4.1 and 6.4 %, respectively. In the target FQs analysis of real honey and milk samples, the recoveries at different fortified concentrations were in the ranges of 88.4 % to 108.6 % with RSD ≤ 5.7 %. The results showed that the proposed method was sensitive, accurate and reliable for the determination of trace FQs in animal-derived foods.
Collapse
Affiliation(s)
- Yangkun Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingjing Kuang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yongzhe Cheng
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chuhui Lin
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongyang Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Min Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Fanghong Ning
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| | - Ping Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
4
|
Canales CP, Delgado S, Cáceres-Jensen L, Buason A, Kristofersson D, Urdiales C, Antilén M. Adsorption kinetics studies of ciprofloxacin in soils derived from volcanic materials by electrochemical approaches and assessment of socio-economic impact on human health. CHEMOSPHERE 2023; 321:138144. [PMID: 36804495 DOI: 10.1016/j.chemosphere.2023.138144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/19/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
The use of antibiotics in the livestock sector has resulted in the entry of these drugs into the soil matrix through the disposal of manure as an organic amendment. To define the fate of these drugs, it is necessary to evaluate kinetic aspects regarding transport in the soil-solution. The aim of this paper is to evaluate the adsorption kinetic parameters of Ciprofloxacin (CIPRO) in Ultisol and Andisol soil which allows obtaining main kinetic parameters (pseudo-first and pseudo-second order models) and to establish the solute transport mechanism by applying kinetic models such as the Elovich equation, Intraparticle diffusion (IPD) and, the Two-site non-equilibrium models (TSNE). The adsorption kinetics of this fluoroquinolone (FQ), on both soils derived from volcanic ashes, is developed using electrochemical techniques for their determination. The experimental amount of CIPRO adsorbed over time (Qt) data best fit with the pseudo-second order kinetic models; R2 = 0.9855, Ɛ = 10.17% and R2 = 0.9959, Ɛ = 10.77% for Ultisol and Andisol, respectively; and where CIPRO adsorption was considered time dependent for both soils but the lower adsorption capacity in Ultisol; with 17.6 ± 2.8 μmol g-1; which could mean a greater risk in environmental. Subsequently, applying models to describe solute transport mechanisms showed differences in the CIPRO adsorption extent for the fast and slow phases. Adsorption isotherms were evaluated, where Ultisol occurs on heterogenous sites as multilayers and Andisol by monolayer with similar Qmax. Finally, the socio-economic impact of antibiotic usage is presented, giving the importance of antibiotics in the livestock sector and their effects on human health.
Collapse
Affiliation(s)
- Camila Pía Canales
- Science Institute & Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, VR-III, University of Iceland, Reykjavik, Iceland; Department of Economics, University of Iceland, Reykjavik, Iceland
| | - Sebastián Delgado
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia, Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Lizethly Cáceres-Jensen
- Laboratorio de Fisicoquímica & Analítica (PachemLab), Núcleo Pensamiento Computacional y Educación para el Desarrollo Sostenible (NuCES), Centro de Investigación en Educación (CIE-UMCE), Departamento de Química, Universidad Metropolitana de Ciencias de la Educación, Santiago 7760197, Chile
| | - Arnar Buason
- Department of Economics, University of Iceland, Reykjavik, Iceland
| | | | - Cristian Urdiales
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia, Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Mónica Antilén
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia, Vicuña Mackenna 4860, Santiago 7820436, Chile; Centro para el Desarrollo de la Nanociencia y Nanotecnologia (CEDENNA), Av. L.B. O'Higgins 3363, Santiago, 7254758, Chile.
| |
Collapse
|
5
|
Wang Q, Cheng S, Ren S, Zheng Z. Construction of molecularly imprinted voltammetric sensor based on Cu N C polyhedron porous carbon from Cu doping ZIF-8 for the selective determination of norfloxacin. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Zhang ZH, Xu JY, Li T, Gao SR, Yang XL. Bio-electrocatalytic degradation of tetracycline by stainless-steel mesh based molybdenum carbide electrode. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80520-80531. [PMID: 35723823 DOI: 10.1007/s11356-022-21207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
In order to treat antibiotic wastewater with high efficiency and low energy consumption, this study proposed the coupling of electrocatalytic degradation and biodegradation, and explored a new modified electrocatalytic material in the coupling system. The stainless-steel mesh based molybdenum carbide (SS-Mo2C) was prepared by a low-cost impregnation method and showed superior electrocatalytic degradation ability for tetracycline (TC) when used as the anode in the electrocatalytic system. The degradation rate of TC with SS-Mo2C anode was 17 times higher than that of stainless-steel (SS) anode, and TC removal efficiency was 77% higher than that of SS anode. The electrocatalytic system prior to the biological reactor was proven to be the optimal coupling method. The external coupling system achieved a significantly higher TC removal (87.0%) than that of the internal coupling system (65.3%) and SS-Mo2C showed an excellent repeatable and stable performance. The fewer and smaller molecular weight intermediates products were observed in bio-electrocatalytic system, especially in the external coupling system. Alpha diversity analysis further confirmed that bio-electrocatalytic system increased the diversity of the microbial community. The stainless-steel mesh based molybdenum carbide (SS-Mo2C), which was prepared by a simple and low-cost impregnation method, significantly improved the electrocatalytic activity of anode, thus contributing to tetracycline removal in the bio-electrocatalytic system, especially in the external coupling system.
Collapse
Affiliation(s)
- Zhi-Hao Zhang
- School of Civil Engineering, Southeast University, Dong Nan Da Xue Road 2, Nanjing, 211189, People's Republic of China
| | - Jia-Ying Xu
- School of Civil Engineering, Southeast University, Dong Nan Da Xue Road 2, Nanjing, 211189, People's Republic of China
| | - Tao Li
- School of Civil Engineering, Southeast University, Dong Nan Da Xue Road 2, Nanjing, 211189, People's Republic of China
| | - Shi-Ru Gao
- School of Civil Engineering, Southeast University, Dong Nan Da Xue Road 2, Nanjing, 211189, People's Republic of China
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Dong Nan Da Xue Road 2, Nanjing, 211189, People's Republic of China.
| |
Collapse
|
7
|
Stimulation of Sulfonamides Antibacterial Drugs Activity as a Result of Complexation with Ru(III): Physicochemical and Biological Study. Int J Mol Sci 2021; 22:ijms222413482. [PMID: 34948278 PMCID: PMC8708937 DOI: 10.3390/ijms222413482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/03/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance is a global problem, and one promising solution to overcome this issue is using metallodrugs, which are drugs containing metal ions and ligands. These complexes are superior to free ligands in various characteristics including anticancer properties and mechanism of action. The pharmacological potential of metallodrugs can be modulated by the appropriate selection of ligands and metal ions. A good example of proper coordination is the combination of sulfonamides (sulfamerazine, sulfathiazole) with a ruthenium(III) ion. This work aimed to confirm that the activity of sulfonamides antibacterial drugs is initiated and/or stimulated by their coordination to an Ru(III) ion. The study determined the structure, electrochemical profile, CT-DNA affinity, and antimicrobial as well as anticancer properties of the synthesized complexes. The results proved that Ru(III) complexes exhibited better biological properties than the free ligands.
Collapse
|
8
|
Skorupa A, Michalkiewicz S, Jakubczyk M. Highly sensitive determination of α-lipoic acid in pharmaceuticals on a boron-doped diamond electrode. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
A simple, highly sensitive, and selective differential pulse voltammetry method for the determination of α-lipoic acid (LA) in pharmaceutical preparations was developed and validated. The method is based on a quasi-reversible, diffusion-controlled, one-electron anodic oxidation of LA on a boron-doped diamond electrode (BDDE) in a McIlvaine (citrate-phosphate, C-PB) buffer solution at pH 3.0. For the first time, this environment was used for LA determination. A linear calibration curve was obtained within the concentration range 5.82 × 10−8 to 4.00 × 10−4 mol L−1 with a correlation coefficient of 0.9999. The limits of detection was estimated to be 1.94 × 10−8 mol L−1, which is one of the lowest values characteristic of voltammetric and chromatographic methods of LA determination. The proposed procedure is sensitive, accurate, and precise. Its utility was demonstrated in the determination of LA in pharmaceuticals without the need for its separation from the matrices. The results were comparable to those obtained by high performance liquid chromatography reference method and were in good accordance with the once declared by manufacturers. Thus, our method can be considered as an alternative to the dominant chromatographic determinations of α-LA in real samples.
Collapse
Affiliation(s)
- Agata Skorupa
- Institute of Chemistry, Jan Kochanowski University , 7G Uniwersytecka St. , 25-406 Kielce , Poland
| | - Slawomir Michalkiewicz
- Institute of Chemistry, Jan Kochanowski University , 7G Uniwersytecka St. , 25-406 Kielce , Poland
| | - Magdalena Jakubczyk
- Institute of Chemistry, Jan Kochanowski University , 7G Uniwersytecka St. , 25-406 Kielce , Poland
| |
Collapse
|
9
|
Voltammetric determination of sulfanilamide using a cobalt phthalocyanine chitosan composite. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Determination of methylisothiazolinone in waters. Comprehensive study about electrochemical behaviour on gold electrode and optimization of square-wave voltammetric methods. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Karahan F, Başı Z, Keskin E, Pınar PT, Yardım Y, Şentürk Z. Electrochemical Determination of Fluoroquinolone Antibiotic Norfloxacin in the Presence of Anionic Surfactant Using the Anodically Pretreated Boron‐Doped Diamond Electrode. ChemistrySelect 2020. [DOI: 10.1002/slct.202002921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fatih Karahan
- Department of Biochemistry Faculty of Science Van Yuzuncu Yil University 65080 Van Turkey
| | - Zehra Başı
- Van School of Health Van Yuzuncu Yil University 65080 Van Turkey
| | - Ertuğrul Keskin
- Department of Analytical Chemistry Faculty of Pharmacy Adiyaman University 02040 Adiyaman Turkey
| | - Pınar Talay Pınar
- Department of Analytical Chemistry Faculty of Pharmacy, Van Yuzuncu Yil University 65080 Van Turkey
| | - Yavuz Yardım
- Department of Analytical Chemistry Faculty of Pharmacy, Van Yuzuncu Yil University 65080 Van Turkey
| | - Zühre Şentürk
- Department of Analytical Chemistry Faculty of Science, Van Yuzuncu Yil University 65080 Van Turkey
| |
Collapse
|
12
|
Rudnicki K, Sipa K, Brycht M, Borgul P, Skrzypek S, Poltorak L. Electrochemical sensing of fluoroquinolone antibiotics. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115907] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Espinoza LC, Sepúlveda P, García A, Martins de Godoi D, Salazar R. Degradation of oxamic acid using dimensionally stable anodes (DSA) based on a mixture of RuO 2 and IrO 2 nanoparticles. CHEMOSPHERE 2020; 251:126674. [PMID: 32359720 DOI: 10.1016/j.chemosphere.2020.126674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Dimensionally stable anodes (DSA) have been widely used to degrade organic compounds because these surfaces promote the electrogeneration of active chlorine species in the bulk of the solution, as well as in the vicinity of the anode when NaCl is used as supporting electrolyte. In this work, the nanoparticles synthesis of IrO2 and RuO2 was performed to obtain two types of DSA electrodes named Class I and II to degrade oxamic acid. For Class I and II DSA, the nanoparticles used were synthesized separately and in the same reaction medium, respectively. Electrolysis were carried out in an open cylindrical cell without division at 25 °C, DSAs were used as anodes and a stainless-steel electrode as cathode, both elements have a geometric area of 2.8 cm2 immersed in 0.05 mol L-1 of NaCl or Na2SO4 and a current density of 3 mA cm-2 was applied for 6 h. Active chlorine species generated in the absence of oxamic acid in NaCl were also detected and quantified through ion chromatography. In Na2SO4 there was no degradation of the compound, but in NaCl the oxamic acid concentration reaching 85% with Class I DSA. The same tendency is observed in mineralization, in which Class I DSA allowed reaching a CO2 transformation close to 73%. The difference in the results occurs because with Class I DSA, more hypochlorite is generated than with Class II and therefore there is a larger amount of oxidizing species in the solution that enables the degradation and mineralization of oxamic acid.
Collapse
Affiliation(s)
- L Carolina Espinoza
- Laboratorio de Electroquímica Del Medio Ambiente, LEQMA. Departamento de Química de los Materiales, Facultad de Química y Biología.Universidad de Santiago de Chile, USACH, Santiago, Chile.
| | - Pamela Sepúlveda
- Facultad de Química and Biología, CEDENNA, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Alejandra García
- Laboratorio de síntesis y Modificación de Nanoestructuras y Materiales Bidimensionales. Centro de Investigación en Materiales Avanzados S.C. (CIMAV), Mexico
| | - Denis Martins de Godoi
- Laboratorio de Materiais Magneticos e Coloides, Departamento de Fisicoquímica, São Paulo State University,UNESP, Araraquara, Brazil
| | - Ricardo Salazar
- Laboratorio de Electroquímica Del Medio Ambiente, LEQMA. Departamento de Química de los Materiales, Facultad de Química y Biología.Universidad de Santiago de Chile, USACH, Santiago, Chile.
| |
Collapse
|
14
|
Hu G, Gao S, Han X, Yang L. Comparison of Immunochromatographic Strips Using Colloidal Gold, Quantum Dots, and Upconversion Nanoparticles for Visual Detection of Norfloxacin in Milk Samples. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01725-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|