1
|
Yin B, Li J, Guo W, Dong H, Zhang G, Xin Y, Zhang G, Chen Q. Photocatalytic degradation of fluoranthene in soil suspension by TiO 2/α-FeOOH with enhanced charge transfer capacity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20621-20636. [PMID: 38381294 DOI: 10.1007/s11356-024-32501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in soil are potentially harmful to human health. However, the use of photocatalysis technology to treat soil contaminated with PAHs remains challenging. Therefore, TiO2/α-FeOOH composite photocatalyst has been synthesized by hydrothermal method and sol-gel method and applied to photocatalytic degradation of fluoranthene in soil. The morphology, elements, crystal structure, optical properties, electrochemical characteristics, and photocatalytic activity of TiO2/α-FeOOH have been characterized. Results showed that TiO2 is tightly fixed on the surface of α-FeOOH, and TiO2/α-FeOOH had higher photocatalytic activity on photocatalytic degradation of fluoranthene in soil under simulated sunlight. The degradation efficiency of TiO2/α-FeOOH is 3.0 and 4.8 times higher than that of TiO2 and α-FeOOH, respectively. This is attributed to enhanced photocatalytic ability by enhancing the transfer capacity of electrons and holes and broadening the spectrum absorption range. The highest degradation efficiency was achieved when the pH of the soil is neutral, the ratio of water/soil is 10:1, and the dosage of catalyst is 50 mg/g. In addition, it was proved that •O2-, h+, and 1O2 are the main active substances in the photocatalysis of TiO2/α-FeOOH. The possible mechanism of a Z-type electron transfer structure was also proposed. The degradation products of fluoranthene were detected, and the degradation pathway was deduced.
Collapse
Affiliation(s)
- Bingjie Yin
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, P. R. China
| | - Jingying Li
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, P. R. China
| | - Wei Guo
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, P. R. China
| | - Haoqing Dong
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, P. R. China
| | - Guangshan Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, P. R. China
| | - Yanjun Xin
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, P. R. China
| | - Guodong Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, P. R. China
- Academy of Dongying Efficient Agricultural Technology and Industry On Saline and Alkaline Land in Collaboration With, Qingdao Agricultural University, Dongying, 257029, P. R. China
| | - Qinghua Chen
- College of Resources and Environment, Qingdao Agricultural University, Qingdao Engineering Research Center for Rural Environment, Qingdao, P. R. China.
| |
Collapse
|
2
|
Das A, Peu SD, Hossain MS, Akanda MAM, Salah MM, Akanda MMH, Rahman M, Das BK. Metal Oxide Nanosheet: Synthesis Approaches and Applications in Energy Storage Devices (Batteries, Fuel Cells, and Supercapacitors). NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1066. [PMID: 36985960 PMCID: PMC10057665 DOI: 10.3390/nano13061066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
In recent years, the increasing energy requirement and consumption necessitates further improvement in energy storage technologies to obtain high cycling stability, power and energy density, and specific capacitance. Two-dimensional metal oxide nanosheets have gained much interest due to their attractive features, such as composition, tunable structure, and large surface area which make them potential materials for energy storage applications. This review focuses on the establishment of synthesis approaches of metal oxide nanosheets (MO nanosheets) and their advancements over time, as well as their applicability in several electrochemical energy storage systems, such as fuel cells, batteries, and supercapacitors. This review provides a comprehensive comparison of different synthesis approaches of MO nanosheets, as well their suitability in several energy storage applications. Among recent improvements in energy storage systems, micro-supercapacitors, and several hybrid storage systems are rapidly emerging. MO nanosheets can be employed as electrode and catalyst material to improve the performance parameters of energy storage devices. Finally, this review outlines and discusses the prospects, future challenges, and further direction for research and applications of metal oxide nanosheets.
Collapse
Affiliation(s)
- Arnob Das
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh
| | - Susmita Datta Peu
- Department of Agriculture, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md. Sanowar Hossain
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh
| | - Md Abdul Mannan Akanda
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Mostafa M. Salah
- Electrical Engineering Department, Future University in Egypt, Cairo 11835, Egypt
| | | | - Mahbubur Rahman
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Barun K. Das
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh
| |
Collapse
|
3
|
Tang F, Xiao Q, Zhu W, Pezzotti G, Zhu J. Facile syntheses of Fe 2O 3-rGO and NiCo-LDH-rGO nanocomposites for high-performance electrochemical capacitors. J Colloid Interface Sci 2023; 634:357-368. [PMID: 36542966 DOI: 10.1016/j.jcis.2022.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Faraday-type electrode materials and devices for electrochemical capacitors have been widely investigated. However, their applications are severely limited by the preparation method and cost of electrode materials. In this work, high-performance electrochemical capacitors were successfully assembled using Fe2O3-decorated reduced graphene oxide (rGO) nanocomposites and NiCo-Layered Double Hydroxides (LDH) as the anode and cathode, respectively. An easy and efficient approach (the modified precipitation method) for the large-scale fabrication was used to prepare Fe2O3 and NiCo-LDH, supported by rGO sheets, respectively. The anode material, Fe2O3-rGO, exhibited an excellent specific capacitance (Csp) of 1073 F g-1 at a current density of 1 A g-1 and a retention rate of 92 % at 10 A g-1, while the NiCo-LDH-rGO cathode material provided a Csp of 1850 F g-1 at 1 A g-1 and maintained 84 % at 10 A g-1. The effective combination of these electrodes for the NiCo-LDH-rGO//Fe2O3-rGO electrochemical capacitors resulted in an excellent energy density of 108 Wh/kg at a power density of 884 W/kg, with remarkable cycling stability (80 % after 1000 cycles at 10 A g-1). We believe that this work, including the proposed method and electrode materials, will advance the further development and commercialization of electrochemical capacitors.
Collapse
Affiliation(s)
- Fan Tang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Qindan Xiao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585 Kyoto, Japan.
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585 Kyoto, Japan
| | - Jiliang Zhu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
4
|
Tong L, Wu C, Hou J, Zhang X, Yan J, Wang Z, Wang Y, Mu J, Zhang Z, Che H. Fe3O4@PPy@MnO2 ternary core-shell nanospheres as electrodes for enhanced energy storage performance. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Luo Q, Jin T, huang J, Liu Z, Huang D, Qian Y. Porous phytic acid-doped sodium alginate aerogels as the electrode material for the electrosorption of uranium from acidic solution. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Hao J, Li T, Yan L, Liang M, Deng Q, Zou X, Hu Q, Bai Y, Zhou Y, Xiang B. Morphology transition of FeOOH induced by N-doped graphene for excellent pseudocapacitive energy storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Wang T, Li K, Le Q, Zhu S, Guo X, Jiang D, Zhang Y. Tuning parallel manganese dioxide to hollow parallel hydroxyl oxidize iron replicas for high-performance asymmetric supercapacitors. J Colloid Interface Sci 2021; 594:812-823. [DOI: 10.1016/j.jcis.2021.03.075] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/27/2021] [Accepted: 03/13/2021] [Indexed: 02/07/2023]
|
8
|
Xian J, Ma H, Li Z, Ding C, Liu Y, Yang J, Cui F. α-FeOOH nanowires loaded on carbon paper anodes improve the performance of microbial fuel cells. CHEMOSPHERE 2021; 273:129669. [PMID: 33524763 DOI: 10.1016/j.chemosphere.2021.129669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/30/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Nanowires synthesized from metal oxides exhibit better conductivity than nanoparticles due to their greater aspect ratio which means that they can transmit electrons over longer distances; in addition, they are also more widely available than pili because their synthesis is not affected by the bacteria themselves. However, there is still little research on the application of metal oxides nanowires to enhance power generation of microbial fuel cells (MFC). In this study, a simple hydrothermal synthesis method was adopted to synthesize α-FeOOH nanowires on carbon paper (α-FeOOH-NWs), which serve as an anode to explore the mechanism of power generation enhancement of MFC. Characterization results reveal α-FeOOH-NWs on carbon paper are approximately 30-50 nm in diameter, with goethite structure. Electrochemical test results indicate that α-FeOOH nanowires could enhance the electrochemical activity of carbon paper and reduce the electron transfer resistance (Rct). Furthermore, α-FeOOH-NWs made the power density of MFC 3.2 times of the control device. SEM result demonstrates that nanowires are beneficial to the formation of biofilms and increase biomass on the electrode surface. Our results demonstrate that nanowires not only improve the electrochemical activity and conductivity of carbon paper but also facilitate the formation of biofilms and increase the biomass of the anode surface. These two mechanisms work together to boost extracellular electron transfer and power generation efficiency of MFC with α-FeOOH-NWs. Our study provides further evidence for the electrical conductivity of metal nanowires, promoting their potential applications in electricity generation such as MFC or other energy development fields.
Collapse
Affiliation(s)
- Jiali Xian
- College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Hua Ma
- College of Environment and Ecology, Chongqing University, Chongqing, China.
| | - Zhe Li
- College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Chenchen Ding
- College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Yan Liu
- College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Jixiang Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Fuyi Cui
- College of Environment and Ecology, Chongqing University, Chongqing, China
| |
Collapse
|
9
|
Hu Y, Yang Q, Gu Y. One-spot synthesis of FeOOH/rGO composites by ferrous-ion-induced self-assembly of graphene oxides with different degrees of oxidation. PLoS One 2021; 16:e0246386. [PMID: 33524047 PMCID: PMC7850491 DOI: 10.1371/journal.pone.0246386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/18/2021] [Indexed: 11/19/2022] Open
Abstract
In this study, graphene oxide sheets with different oxidation degrees were reduced by ferrous ion for coating FeOOH nano particles on reduced graphene oxide (rGO) matrix to synthesize FeOOH/rGO composites. The effect of the degree of oxidation on the morphology and chemical structure of FeOOH/rGO was studied using scanning electron microscopy, Raman spectroscopy, thermogravimetric analysis, and Brunauer-Emmett-Teller surface area analysis. The particle size of FeOOH crystallites was approximately 100 nm, and they were distributed uniformly on the surface and in the pores of FeOOH/rGO. FeOOH/rGO prepared with mildly oxidized graphite had fewer defects, higher specific surface area, and higher FeOOH content than FeOOH/rGO prepared with highly oxidized graphite. These features resulted in better electrochemical properties, such as larger specific capacitance and lower charge transfer resistance.
Collapse
Affiliation(s)
- Yang Hu
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing, China
- * E-mail:
| | - Qingyang Yang
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yingyu Gu
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
10
|
A systematic approach to achieve high energy density hybrid supercapacitors based on Ni–Co–Fe hydroxide. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136578] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Chen X, Zeng Y, Chen Z, Wang S, Xin C, Wang L, Shi C, Lu L, Zhang C. Synthesis and Electrochemical Property of FeOOH/Graphene Oxide Composites. Front Chem 2020; 8:328. [PMID: 32426325 PMCID: PMC7203213 DOI: 10.3389/fchem.2020.00328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/31/2020] [Indexed: 11/13/2022] Open
Abstract
A facile ultrasonication method was used to uniformly mix nanospindle-shaped FeOOH (80–100 nm) and a conductive matrix of graphene oxide (GO) to form FeOOH/GO composites. No carbon peak was observed in the X-ray diffraction pattern, indicating that the graphene oxide did not stack together and that the dispersion of graphene was very high. X-ray photoelectron spectroscopy (XPS) tests showed that the formation of Fe-O-C bonds played a positive role in electron transport, revealing that it has a certain impact on the electrochemical performance of FeOOH/GO. The FeOOH/GO was further characterized by TGA, and the content of GO in the synthesized sample was 6.68%. Compared with that of FeOOH, the initial discharge capacity of FeOOH/GO could reach 1437.28 mAh/g. Additionally, compared to that of pure FeOOH, the reversibility of the electrochemical reaction of FeOOH/GO was improved, and the impedance value was reduced. Finally, FeOOH/GO was used directly as a lithium-ion battery (LIB) anode material to improve the kinetics of the Lithium ions insertion/extraction process and improve ionic conductivity.
Collapse
Affiliation(s)
- Xingying Chen
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
| | - Yanyang Zeng
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| | - Zehua Chen
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, China.,School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Shuo Wang
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Chengzhou Xin
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Lixia Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Changliang Shi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Liang Lu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, China
| | - Chuanxiang Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, China
| |
Collapse
|
12
|
Yin Z, Shao J, Tang W, Sheng W, Sun D, Xiao Y, Cao S. Design and synthesis of 'single-crystal-like' C-doped TiO 2 nanorods for high-performance supercapacitors. NANOTECHNOLOGY 2020; 31:275401. [PMID: 32163942 DOI: 10.1088/1361-6528/ab7f80] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although TiO2 is widely used as a promising electrode material for supercapacitors, its potential application suffers from a critical limitation due to its poor electrical conductivity and low rate capability. Here, we report a cost-effective hydrothermal strategy to design and construct a novel 'single-crystal-like' C-doped TiO2 electrode material. The as-synthesized electrode material combines the advantages of TiO2, 'single-crystal-like' features and carbon doping, considerably improving the electrical conductivity of TiO2. The electrochemical measurements demonstrate that the C-doped TiO2 material presents an excellent specific capacitance (449.8 F g-1 at 1 A g-1), which approaches six times more than the value (77.3 F g-1 at 1 A g-1) of P25 electrodes, and far beyond the value of many previously reported TiO2 electrodes. Therefore, this work explores a new method to design high performance electrochemical TiO2 electrode materials by incorporating other dopants into the TiO2 lattice.
Collapse
Affiliation(s)
- Zhengliang Yin
- Research School of Polymer Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|