1
|
Singh J, Thareja R, Malik P. Exploring the Potential of Quantum Dot-Sensitized Solar Cells: Innovation and Insights. Chemphyschem 2025; 26:e202400800. [PMID: 39964946 DOI: 10.1002/cphc.202400800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/02/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Photovoltaic technologies have garnered significant attention towards generating renewable and clean energy from solar power. Quantum-dot-sensitized solar cells represent a promising third-generation photovoltaic technology that offers alternatives to conventional silicon-based solar cells due to their unique properties, their favourable optoelectronic properties for photovoltaic applications including simplified manufacturing, lower processing temperatures, enhanced flexibility, semi-transparent design, and a theoretical efficiency up to 44 %. The unique characteristic of tailoring the size and composition of quantum dots makes them valuable absorber materials capable of efficiently harnessing a broader range of the solar spectrum. The potential of quantum dot-sensitized solar cells to revolutionize the field of photovoltaic technology is a cause for optimism. However, the major limitation of the overall power conversion efficiency lies in their inability to absorb ultraviolet and near-infrared. Therefore, a photovoltaic technology that can effectively harness the entire solar spectrum becomes imperative. This review discusses the synthesis and light conversion mechanisms of these solar cells. Additionally, it offers an overview of the various advancements made in quantum dot-sensitized solar cells for enhancement in the efficiency of energy conversion. It focuses on the light-absorbing materials used, their efficiency, and the advantages and drawbacks of quantum dot solar cell technology.
Collapse
Affiliation(s)
- Jyoti Singh
- Department of Chemistry, Hansraj College, University of Delhi, Delhi-110007, India
| | - Rakhi Thareja
- Department of Chemistry, St. Stephen's College, University of Delhi, Delhi-110007, India
| | - Pragati Malik
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Delhi-110019, India
| |
Collapse
|
2
|
Wang T, Cai L, Xia C, Song H, Li L, Bai G, Fu N, Xian L, Yang R, Mu H, Zhang G, Lin S. In Situ Growth of MoS 2 Onto Co-Based MOF Derivatives Toward High-Efficiency Quantum Dot-Sensitized Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406476. [PMID: 39283050 PMCID: PMC11558139 DOI: 10.1002/advs.202406476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/26/2024] [Indexed: 11/14/2024]
Abstract
Quantum dot sensitized solar cells (QDSCs) represent a promising third-generation photovoltaic technology, boasting a high theoretical efficiency of 44% and cost efficiency. However, their practical efficiency is constrained by reduced photovoltage (Voc) and fill factor (FF). One primary reason is the inefficient charge transfer and elevated recombination rates at the counter electrode (CE). In this work, a novel CE composed of a titanium mesh loaded with Co,N─C@MoS2 is introduced for the assembly of QDSCs. The incorporation of nanosized MoS2 enhances the density of catalytic sites, while the Co,N─C component ensures high conductivity and provides a substantial active surface area. Additionally, the titanium mesh's 3D structure serves as an effective electrical conduit, facilitating rapid electron transfer from the external circuit to the composite. These improvements in catalytic activity, charge transfer rate, and stability of the CE significantly enhance the photovoltaic performance of QDSCs. The optimized cells achieve a groundbreaking power conversion efficiency (PCE) of 16.39%, accompanied by a short-circuit current density (Jsc) of 27.26 mA cm-2, Voc of 0.818 V, and FF of 0.735. These results not only offer a new strategy for designing electrodes with high catalytic activity but also underscore the promising application of the Co,N─C@MoS2 composite in enhancing QDSC technology.
Collapse
Affiliation(s)
- Tianming Wang
- School of ScienceXi'an Polytechnic UniversityXi'anShanxi710048China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Lejuan Cai
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Caijuan Xia
- School of ScienceXi'an Polytechnic UniversityXi'anShanxi710048China
| | - Han Song
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
- College of Chemistry and Chemical EngineeringXinjiang Normal UniversityXinjiang Uygur Autonomous RegionsUrumqi830054China
| | - Lianbi Li
- School of ScienceXi'an Polytechnic UniversityXi'anShanxi710048China
| | - Gongxun Bai
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang ProvinceChina Jiliang UniversityHangzhou310018China
| | - Nianqing Fu
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Lede Xian
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Rong Yang
- Changsha Semiconductor Technology and Application Innovation Research InstituteCollege of Semiconductors (College of Integrated Circuits)Hunan UniversityChangsha410082China
| | - Haoran Mu
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Guangyu Zhang
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Shenghuang Lin
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| |
Collapse
|
3
|
Bhuyan MM, Jeong JH. Gels/Hydrogels in Different Devices/Instruments-A Review. Gels 2024; 10:548. [PMID: 39330150 PMCID: PMC11430987 DOI: 10.3390/gels10090548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/21/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Owing to their physical and chemical properties and stimuli-responsive nature, gels and hydrogels play vital roles in diverse application fields. The three-dimensional polymeric network structure of hydrogels is considered an alternative to many materials, such as conductors, ordinary films, constituent components of machines and robots, etc. The most recent applications of gels are in different devices like sensors, actuators, flexible screens, touch panels, flexible storage, solar cells, batteries, and electronic skin. This review article addresses the devices where gels are used, the progress of research, the working mechanisms of hydrogels in those devices, and future prospects. Preparation methods are also important for obtaining a suitable hydrogel. This review discusses different methods of hydrogel preparation from the respective raw materials. Moreover, the mechanism by which gels act as a part of electronic devices is described.
Collapse
Affiliation(s)
- Md Murshed Bhuyan
- Research Center for Green Energy Systems, Department of Mechanical, Smart, and Industrial Engineering (Mechanical Engineering Major), Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Jae-Ho Jeong
- Research Center for Green Energy Systems, Department of Mechanical, Smart, and Industrial Engineering (Mechanical Engineering Major), Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Kasaye BB, Shura MW, Dibaba ST. Review of recent progress in the development of electrolytes for Cd/Pb-based quantum dot-sensitized solar cells: performance and stability. RSC Adv 2024; 14:16255-16268. [PMID: 38769954 PMCID: PMC11103669 DOI: 10.1039/d4ra01030b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/27/2024] [Indexed: 05/22/2024] Open
Abstract
Quantum dot-sensitized solar cells (QDSSCs) represent an exciting advancement in third-generation photovoltaic solar cells owing to their ability to generate multiple electron-hole pairs per photon, high stability under light and moisture exposure, and flexibility in size and composition tuning. Although these cells have achieved power conversion efficiencies exceeding 15%, there remains a challenge in enhancing both their efficiency and stability for practical large-scale applications. Therefore, in this review, we aimed to investigate recent progress in improving the long-term stability, analyzing the impact of advanced quantum dot properties on charge-transport optimization, and assessing the role of interface engineering in reducing recombination losses to maximize QDSSC performance and stability. Additionally, this review delves into key elements such as the electrolyte composition, ionic conductivity, and compatibility with counter electrodes and photoanodes to understand their influence on power conversion efficiencies and stability. Finally, potential directions for advancing QDSC development in future are discussed to provide insights into the obstacles and opportunities for achieving high-efficiency QDSSCs.
Collapse
Affiliation(s)
- Bayisa Batu Kasaye
- Department of Applied Physics, School of Natural and Applied Sciences, Adama Science and Technology University Adama Oromia Ethiopia
| | - Megersa Wodajo Shura
- Department of Applied Physics, School of Natural and Applied Sciences, Adama Science and Technology University Adama Oromia Ethiopia
| | - Solomon Tiruneh Dibaba
- Department of Applied Physics, School of Natural and Applied Sciences, Adama Science and Technology University Adama Oromia Ethiopia
| |
Collapse
|
5
|
Kharboot LH, Fadil NA, Bakar TAA, Najib ASM, Nordin NH, Ghazali H. A Review of Transition Metal Sulfides as Counter Electrodes for Dye-Sensitized and Quantum Dot-Sensitized Solar Cells. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2881. [PMID: 37049175 PMCID: PMC10095893 DOI: 10.3390/ma16072881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Third-generation solar cells, including dye-sensitized solar cells (DSSCs) and quantum dot-sensitized solar cells (QDSSCs), have been associated with low-cost material requirements, simple fabrication processes, and mechanical robustness. Hence, counter electrodes (CEs) are a critical component for the functionality of these solar cells. Although platinum (Pt)-based CEs have been dominant in CE fabrication, they are costly and have limited market availability. Therefore, it is important to find alternative materials to overcome these issues. Transition metal chalcogenides (TMCs) and transition metal dichalcogenides (TMDs) have demonstrated capabilities as a more cost-effective alternative to Pt materials. This advantage has been attributed to their strong electrocatalytic activity, excellent thermal stability, tunability of bandgap energies, and variable crystalline morphologies. In this study, a comprehensive review of the major components and working principles of the DSSC and QDSSC are presented. In developing CEs for DSSCs and QDSSCs, various TMS materials synthesized through several techniques are thoroughly reviewed. The performance efficiencies of DSSCs and QDSSCs resulting from TMS-based CEs are subjected to in-depth comparative analysis with Pt-based CEs. Thus, the power conversion efficiency (PCE), fill factor (FF), short circuit current density (Jsc) and open circuit voltage (Voc) are investigated. Based on this review, the PCEs for DSSCs and QDSSCs are found to range from 5.37 to 9.80% (I-/I3- redox couple electrolyte) and 1.62 to 6.70% (S-2/Sx- electrolyte). This review seeks to navigate the future direction of TMS-based CEs towards the performance efficiency improvement of DSSCs and QDSSCs in the most cost-effective and environmentally friendly manner.
Collapse
Affiliation(s)
- Layla Haythoor Kharboot
- Department of Materials, Manufacturing, and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (L.H.K.); (T.A.A.B.); (A.S.M.N.)
| | - Nor Akmal Fadil
- Department of Materials, Manufacturing, and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (L.H.K.); (T.A.A.B.); (A.S.M.N.)
- Materials Research and Consultancy Group, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Tuty Asma Abu Bakar
- Department of Materials, Manufacturing, and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (L.H.K.); (T.A.A.B.); (A.S.M.N.)
- Materials Research and Consultancy Group, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Abdillah Sani Mohd Najib
- Department of Materials, Manufacturing, and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (L.H.K.); (T.A.A.B.); (A.S.M.N.)
- Materials Research and Consultancy Group, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Norhuda Hidayah Nordin
- Department of Manufacturing and Material Engineering, International Islamic University Malaysia, Jalan Gombak, Kuala Lumpur 53100, Selangor, Malaysia;
| | - Habibah Ghazali
- College of Engineering and Science, Victoria University, Footscray Park Campus, Ballarat Road, Footscray, P.O. Box 14428, Melbourne, VIC 8001, Australia;
| |
Collapse
|
6
|
Yao D, Hu Z, Zheng R, Li J, Wang L, Yang X, Lü W, Xu H. Black TiO 2-Based Dual Photoanodes Boost the Efficiency of Quantum Dot-Sensitized Solar Cells to 11.7. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4294. [PMID: 36500917 PMCID: PMC9741270 DOI: 10.3390/nano12234294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Quantum dot-sensitized solar cells (QDSSC) have been regarded as one of the most promising candidates for effective utilization of solar energy, but its power conversion efficiency (PCE) is still far from meeting expectations. One of the most important bottlenecks is the limited collection efficiency of photogenerated electrons in the photoanodes. Herein, we design QDSSCs with a dual-photoanode architecture, and assemble the dual photoanodes with black TiO2 nanoparticles (NPs), which were processed by a femtosecond laser in the filamentation regime, and common CdS/CdSe QD sensitizers. A maximum PCE of 11.7% with a short circuit current density of 50.3 mA/cm2 is unambiguously achieved. We reveal both experimentally and theoretically that the enhanced PCE is mainly attributed to the improved light harvesting of black TiO2 due to the black TiO2 shells formed on white TiO2 NPs.
Collapse
Affiliation(s)
- Danwen Yao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Zhenyu Hu
- State Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Ruifeng Zheng
- State Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Jialun Li
- State Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Liying Wang
- State Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Xijia Yang
- State Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Wei Lü
- State Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Huailiang Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
- State Key Laboratory of Precision Spectroscopy and Chongqing Institute, East China Normal University, Shanghai 200062, China
| |
Collapse
|
7
|
Optimization Strategies of Preparation of Biomass-Derived Carbon Electrocatalyst for Boosting Oxygen Reduction Reaction: A Minireview. Catalysts 2020. [DOI: 10.3390/catal10121472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oxygen reduction reaction (ORR) has attracted considerable attention for clean energy conversion technologies to reduce traditional fossil fuel consumption and greenhouse gas emissions. Although platinum (Pt) metal is currently used as an electrocatalyst to accelerate sluggish ORR kinetics, the scarce resource and high cost still restrict its further scale-up applications. In this regard, biomass-derived carbon electrocatalysts have been widely adopted for ORR electrocatalysis in recent years owing to their tunable physical/chemical properties and cost-effective precursors. In this minireview, recent advances of the optimization strategies in biomass-derived carbon electrocatalysts towards ORR have been summarized, mainly focusing on the optimization of pore structure and active site. Besides, some current challenges and future perspectives of biomass-derived carbon as high-performance electrocatalysts for ORR have been also discussed in detail. Hopefully, this minireview will afford a guideline for better design of biomass-derived carbon electrocatalysts for ORR-related applications.
Collapse
|
8
|
Zheng W, Zhang S. The effect of CuS counter electrode microtopography on the properties of quantum dot sensitized solar cells. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Xu P, Chang X, Liu R, Wang L, Li X, Zhang X, Yang X, Wang D, Lü W. Boosting Power Conversion Efficiency of Quantum Dot-Sensitized Solar Cells by Integrating Concentrating Photovoltaic Concept with Double Photoanodes. NANOSCALE RESEARCH LETTERS 2020; 15:188. [PMID: 32990822 PMCID: PMC7524932 DOI: 10.1186/s11671-020-03424-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Despite great efforts dedicated to enhance power conversion efficiency (PCE) of quantum dot-sensitized solar cells (QDSSCs) in the past two decades, the efficiency of QDSSCs is still far behind its theoretical value. The present approaches for improving PCE are mainly focused on tailoring the bandgap of QDs to broadening light-harvesting and optimizing interfaces of component parts. Herein, a new solar cell architecture is proposed by integrating concentrating solar cell (CPV) concept into QDSSCs with double photoanode design. The Cu2S mesh is used as a counter electrode and sandwiched between two photoanodes. This designed battery structure can increase the PCE by 260% compared with a single photoanode. With the most extensively used CdS/CdSe QD sensitizers, a champion PCE of 8.28% (Voc = 0.629 V, Jsc = 32.247 mA cm-2) was achieved. This is mainly due to the increase in Jsc due to the double photoanode design and adoption of the CPV concept. In addition, another reason is that concentrated sunshine illumination induced a photothermal effect, accelerating the preceding chemical reactions associated with the conversion of polysulfide species. The cell fabrication and design reported here provides a new insight for further development of QDSSCs.
Collapse
Affiliation(s)
- Pei Xu
- Key Laboratory of Materials Design and Quantum Simulation, College of Science, Changchun University, Changchun, 130012, People's Republic of China
| | - Xiaopeng Chang
- Key Laboratory of Materials Design and Quantum Simulation, College of Science, Changchun University, Changchun, 130012, People's Republic of China
| | - Runru Liu
- Key Laboratory of Materials Design and Quantum Simulation, College of Science, Changchun University, Changchun, 130012, People's Republic of China.
| | - Liying Wang
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, People's Republic of China
| | - Xuesong Li
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, People's Republic of China
| | - Xueyu Zhang
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, People's Republic of China
| | - Xijia Yang
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, People's Republic of China
| | - Dejun Wang
- Key Laboratory of Materials Design and Quantum Simulation, College of Science, Changchun University, Changchun, 130012, People's Republic of China
| | - Wei Lü
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, People's Republic of China.
| |
Collapse
|