1
|
Zhong H, Zhang Q, Liu Z, Du J, Tao C. Ti/Ti 4O 7 Anodes for Efficient Electrodeposition of Manganese Metal and Anode Slime Generation Reduction. ACS OMEGA 2023; 8:38469-38480. [PMID: 37867691 PMCID: PMC10586254 DOI: 10.1021/acsomega.3c05273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023]
Abstract
Preventing lead-based anodes from causing high-energy consumption, lead pollution, and harmful anode slime emission is a major challenge for the current electrolytic manganese metal industry. In this work, a Ti4O7-coated titanium electrode was used as anode material (Ti/Ti4O7 anode) in manganese electrowinning process for the first time and compared with a lead-based anode (Pb anode). The Ti/Ti4O7 anode was used for galvanostatic electrolysis; the cathodic current efficiency improved by 3.22% and energy consumption decreased by 7.82%. During 8 h of electrolysis, it reduced 90.42% solution anode slime and 72.80% plate anode slime formation. Anode product characterization and electrochemical tests indicated that the Ti/Ti4O7 anode possesses good oxygen evolution activity, and γ-MnO2 has a positive catalytic effect on oxygen evolution reaction (OER), which inhibited anode Mn2+ oxidation reaction and reduced the formation of anode slime. In addition, the low charge-transfer resistance, high diffusion resistance, and dense MnO2 layer of the anode blocked the diffusion path of Mn3+ in the system and inhibited the formation of anode slime. The Ti/Ti4O7 anode exhibits excellent electrochemical performance, which provides a new idea for the selection of novel anodes, energy savings and emission reduction, and the establishment of a new mode of clean production in the electrolytic manganese metal industry.
Collapse
Affiliation(s)
- Haidong Zhong
- School
of Chemistry and Chemical Engineering, Chongqing
University, Chongqing 400044, China
| | - Qian Zhang
- School
of Chemistry and Chemical Engineering, Chongqing
University, Chongqing 400044, China
| | - Zuohua Liu
- School
of Chemistry and Chemical Engineering, Chongqing
University, Chongqing 400044, China
- State
Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Jun Du
- School
of Chemistry and Chemical Engineering, Chongqing
University, Chongqing 400044, China
| | - Changyuan Tao
- School
of Chemistry and Chemical Engineering, Chongqing
University, Chongqing 400044, China
- State
Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| |
Collapse
|
2
|
Alkhadra M, Su X, Suss ME, Tian H, Guyes EN, Shocron AN, Conforti KM, de Souza JP, Kim N, Tedesco M, Khoiruddin K, Wenten IG, Santiago JG, Hatton TA, Bazant MZ. Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chem Rev 2022; 122:13547-13635. [PMID: 35904408 PMCID: PMC9413246 DOI: 10.1021/acs.chemrev.1c00396] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 02/05/2023]
Abstract
Agricultural development, extensive industrialization, and rapid growth of the global population have inadvertently been accompanied by environmental pollution. Water pollution is exacerbated by the decreasing ability of traditional treatment methods to comply with tightening environmental standards. This review provides a comprehensive description of the principles and applications of electrochemical methods for water purification, ion separations, and energy conversion. Electrochemical methods have attractive features such as compact size, chemical selectivity, broad applicability, and reduced generation of secondary waste. Perhaps the greatest advantage of electrochemical methods, however, is that they remove contaminants directly from the water, while other technologies extract the water from the contaminants, which enables efficient removal of trace pollutants. The review begins with an overview of conventional electrochemical methods, which drive chemical or physical transformations via Faradaic reactions at electrodes, and proceeds to a detailed examination of the two primary mechanisms by which contaminants are separated in nondestructive electrochemical processes, namely electrokinetics and electrosorption. In these sections, special attention is given to emerging methods, such as shock electrodialysis and Faradaic electrosorption. Given the importance of generating clean, renewable energy, which may sometimes be combined with water purification, the review also discusses inverse methods of electrochemical energy conversion based on reverse electrosorption, electrowetting, and electrokinetic phenomena. The review concludes with a discussion of technology comparisons, remaining challenges, and potential innovations for the field such as process intensification and technoeconomic optimization.
Collapse
Affiliation(s)
- Mohammad
A. Alkhadra
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiao Su
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Matthew E. Suss
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Wolfson
Department of Chemical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Nancy
and Stephen Grand Technion Energy Program, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Huanhuan Tian
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eric N. Guyes
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Amit N. Shocron
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Kameron M. Conforti
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - J. Pedro de Souza
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Nayeong Kim
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michele Tedesco
- European
Centre of Excellence for Sustainable Water Technology, Wetsus, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Khoiruddin Khoiruddin
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - I Gede Wenten
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - Juan G. Santiago
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - T. Alan Hatton
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Martin Z. Bazant
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Mathematics, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Progress in Preparation and Application of Titanium Sub-Oxides Electrode in Electrocatalytic Degradation for Wastewater Treatment. Catalysts 2022. [DOI: 10.3390/catal12060618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To achieve low-carbon and sustainable development it is imperative to explore water treatment technologies in a carbon-neutral model. Because of its advantages of high efficiency, low consumption, and no secondary pollution, electrocatalytic oxidation technology has attracted increasing attention in tackling the challenges of organic wastewater treatment. The performance of an electrocatalytic oxidation system depends mainly on the properties of electrodes materials. Compared with the instability of graphite electrodes, the high expenditure of noble metal electrodes and boron-doped diamond electrodes, and the hidden dangers of titanium-based metal oxide electrodes, a titanium sub-oxide material has been characterized as an ideal choice of anode material due to its unique crystal and electronic structure, including high conductivity, decent catalytic activity, intense physical and chemical stability, corrosion resistance, low cost, and long service life, etc. This paper systematically reviews the electrode preparation technology of Magnéli phase titanium sub-oxide and its research progress in the electrochemical advanced oxidation treatment of organic wastewater in recent years, with technical difficulties highlighted. Future research directions are further proposed in process optimization, material modification, and application expansion. It is worth noting that Magnéli phase titanium sub-oxides have played very important roles in organic degradation. There is no doubt that titanium sub-oxides will become indispensable materials in the future.
Collapse
|