1
|
Parveen N. Resent Development of Binder-Free Electrodes of Transition Metal Oxides and Nanohybrids for High Performance Supercapacitors - A Review. CHEM REC 2024; 24:e202300065. [PMID: 37194959 DOI: 10.1002/tcr.202300065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/02/2023] [Indexed: 05/18/2023]
Abstract
The entire world is aware of the serious issue of global warming and therefore utilizing renewable energy sources is the most encouraging steps toward solving energy crises, and as a result, energy storage solutions are necessary. The supercapacitors (SCs) have a high-power density and a long cycle life, they are promising as an electrochemical conversion and storage device. In order to achieve high electrochemical performance, electrode fabrication must be implemented properly. Electrochemically inactive and insulating binders are utilized in the conventional slurry coating method of making electrodes to provide adhesion between the electrode material and the substrate. This results in an undesirable "dead mass," which lowers the overall device performance. In this review, we focused on binder-free SCs electrodes based on transition metal oxides and composites. With the best examples providing the critical aspects, the benefits of binder-free electrodes over slurry-coated electrodes are addressed. Additionally, different metal-oxides used in the fabrication of binder-free electrodes are assessed, taking into account the various synthesis methods, giving an overall picture of the work done for binder-free electrodes. The future outlook is provided along with the benefits and drawbacks of binder-free electrodes based on transition metal oxides.
Collapse
Affiliation(s)
- Nazish Parveen
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Hofuf, 31982, Al-Ahsa, Saudi Arabia
| |
Collapse
|
2
|
Ji Z, Liu C, Xie W, Liu S, Zhang C, Liu F, Sun H, Lu Y, Pan X, Wang C, Wang Z. Interfacial engineered PANI/carbon nanotube electrode for 1.8 V ultrahigh voltage aqueous supercapacitors. NANOTECHNOLOGY 2023; 34:165401. [PMID: 36669198 DOI: 10.1088/1361-6528/acb4f4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
Flexible three-dimensional interconnected carbon nanotubes on the carbon cloth (3D-CNTs/CC) were obtained through simple magnesium reduction reactions. According to the Nernst equation, the cell voltage based on these pure carbon electrodes without any additives could reach 1.5 V due to the higher di-hydrogen evolution over potential in neutral 3.5 M LiCl electrolytes. In order to improve the electrochemical performance of the electrodes, 3D-CNTs/CC electrodes covered with polyaniline barrier layer (3D-PANI/CNTs/CC) were prepared byin situelectropolymerization using interfacial engineering method. The assembled symmetric supercapacitors display a broadened voltage of 1.8 V, high areal capacitance of 380 mF cm-2, outstanding areal energy density of 85.5μWh cm-2and 84% of its initial capacitance after 20 000 charge-discharge cycles. This work demonstrated that the interface engineering strategy provides a promising way to improve the energy density of carbon-based aqueous supercapacitors by widening the voltage and boosting the capacitance simultaneously.
Collapse
Affiliation(s)
- Zhichao Ji
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Congcong Liu
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Wenhe Xie
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Shenghong Liu
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Chao Zhang
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Fuwei Liu
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Haibin Sun
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Yang Lu
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Xuexue Pan
- Guangdong Jiuzhou Energy Storage Technology Co., Ltd, Zhongshan 528437, People's Republic of China
| | - Chunlei Wang
- Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Zhuanpei Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
3
|
Li B, Liu S, Yang H, Wang R, Xu X, Zhou Y, Zhang Y, Yang D, Li J. Fabrication of Coral-like Polyaniline/Continuously Reinforced Carbon Nanotube Woven Composite Films for Flexible High-Stability Supercapacitor Electrodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4343-4357. [PMID: 36629286 DOI: 10.1021/acsami.2c20626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The electrochemical performance is significantly influenced by the structure and surface morphology of the electrode materials used in supercapacitors. Using the floating catalytic chemical vapor deposition (FCCVD) technique, a self-supporting, flexible layer of continuously reinforced carbon nanotube woven film (CNWF) was developed. Then, polyaniline (PANI) was formed in the conductive network of CNWF using cyclic voltammetry electrochemical polymerization (CVEP) in various aqueous electrolytes to produce a series of flexible CNWF/PANI composite films. The impacts of the CVEP period, electrolyte type, and electrolyte concentration on the surface morphology, doping degree, and hydrophilicity of CNWF/PANI composite films were thoroughly examined. The CNWF/PANI1-15C composite electrode, which was created using 15 cycles of CVEP in a solution of 1 M sodium bisulfate, displayed a distinctive coral-like PANI layer with a well-defined sharp nanoprotuberance structure, a 48% doping degree, and a quick reversible pseudocapacitive storage mechanism. At a current density of 1 A g-1, the energy density and specific capacitance reached 54.9 Wh kg-1 and 1098.0 F g-1, respectively, with a specific capacitance retention rate of 75.9% maintained at 10 A g-1. Both the specific capacitance and coulomb efficiency were maintained at 96.9% and more than 98.1% of their initial values after being subjected to 2000 cycles of galvanostatic charge and discharge, demonstrating excellent electrochemical cycling stability. The CNWF/PANI1-15C composite film, an ideal electrode material, offers a promising future in the field of flexible energy storage due to its exceptional mechanical properties (127.9 MPa tensile strength and 16.2% elongation at break).
Collapse
Affiliation(s)
- Bingjian Li
- School of Materials Science and Engineering, Changzhou University, Changzhou213164, China
| | - Shi Liu
- School of Materials Science and Engineering, Changzhou University, Changzhou213164, China
| | - Haicun Yang
- School of Materials Science and Engineering, Changzhou University, Changzhou213164, China
| | - Ran Wang
- School of Materials Science and Engineering, Changzhou University, Changzhou213164, China
| | - Xixi Xu
- School of Materials Science and Engineering, Changzhou University, Changzhou213164, China
| | - Yinjie Zhou
- School of Materials Science and Engineering, Changzhou University, Changzhou213164, China
| | - Yun Zhang
- Changzhou Key Laboratory of Functional Film Materials, Pan Asian Microvent Tech (Jiangsu) Corporation, Changzhou213164, China
| | - Dan Yang
- School of Materials Science and Engineering, Changzhou University, Changzhou213164, China
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Changzhou University, Changzhou213164, China
| | - Jinchun Li
- School of Materials Science and Engineering, Changzhou University, Changzhou213164, China
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Changzhou University, Changzhou213164, China
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou213164, China
| |
Collapse
|
4
|
Guo Y, Zou X, Wei Y, Shu L, Li A, Zhang J, Wang R. Synthesis of organic hybrid ruthenium oxide nanoparticles for high-performance supercapacitors. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Guo Y, Wei Y, Shu L, Li A, Zhang J, Wang R. Structure related RuSe2 nanoparticles and their application in supercapacitors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Fabrication of self-doped aramid-based porous carbon fibers for the high-performance supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Korkmaz S, Kariper İA, Karaman C, Karaman O. MWCNT/Ruthenium hydroxide aerogel supercapacitor production and investigation of electrochemical performances. Sci Rep 2022; 12:12862. [PMID: 35896810 PMCID: PMC9329456 DOI: 10.1038/s41598-022-17286-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, the material obtained from the sonication of the double-walled carbon nanotube and ruthenium chloride was produced as an aerogel. Then, symmetrical supercapacitor devices were made using them, and their electrochemical properties were investigated. XRD and FTIR were used in the structural analysis of the aerogel, STEM in surface images, and elemental analyses in EDX. Electrochemical analysis was performed by galvanostat/potentiostat. From the cyclic voltammetry analysis, the highest specific capacitance for MWCNT/Ruthenium hydroxide aerogels was achieved as 423 F/g at 5 mV/s. On the other hand, the corresponding values calculated from the charge–discharge curves were found to be 420.3 F/g and 319.9 F/g at the current densities of 0.5 A/g and 10.0 A/g, respectively. The capacitance retention of as-synthesized aerogel was 96.38% at the end of the 5000 consecutive consecutive cyclic voltammetry cycles.
Collapse
Affiliation(s)
- Satiye Korkmaz
- Department of Electrical-Electronics Engineering, Faculty of Engineering, Karabuk University, 78050, Karabük, Turkey
| | | | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, 07058, Antalya, Turkey.
| | - Onur Karaman
- Department of Medical Imaging Techniques, Akdeniz University, 07058, Antalya, Turkey.
| |
Collapse
|
8
|
Refat MS, Saad HA, Gobouri AA, Alsawat M, Belgacem K, Majrashi BM, Adam AMA. RuO2 Nanostructures from Ru(III) Complexes As a New Smart Nanomaterials for Using in the Recycling and Sustainable Wastewater Treatment: Synthesis, Characterization, and Catalytic Activity in the Hydrogen Peroxide Decomposition. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024421150218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Hydrothermal Synthesis of CuO/RuO2/MWCNT Nanocomposites with Morphological Variants for High Efficient Supercapacitors. Catalysts 2021. [DOI: 10.3390/catal12010023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In this study, we develop the optimum composition of copper oxide/ruthenium oxide and multi-walled carbon nanotubes (CuO/RuO2/MWCNTs) ternary nanocomposite via a hydrothermal method as an efficient electrode material for supercapacitor applications. The ratio between CuO and RuO2 varied to improve the electrochemical performance of the electrode. The synthesized nanocomposites are analyzed by high-resolution scanning electron microscopy (HR-SEM), thermo gravimetric analyzer (TGA) and electrochemical impedance spectroscopy (EIS). Furthermore, the elemental composition is analyzed by energy dispersive X-ray (EDX) spectroscopy and the specific capacitance was analyzed by cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) methods. The electrochemical investigations is conducted in a three-electrode system and the sample is attached on a stainless steel plate as the working electrode; platinum wire works as the counter electrode and Ag/AgCl electrode as the reference electrode, adopting 3 M (NH4)2SO4 as the electrolyte. The resultant of CuO/RuO2/MWCNT nanocomposite with 7 wt% Cu and 20 wt% Ru was found to perform the highest specific capacitance of 461.59 F/g in a current density of 1 A/g.
Collapse
|
10
|
Yang H, Zhang L, Wang H, Huang S, Xu T, Kong D, Zhang Z, Zang J, Li X, Wang Y. Regulating Na deposition by constructing a Au sodiophilic interphase on CNT modified carbon cloth for flexible sodium metal anode. J Colloid Interface Sci 2021; 611:317-326. [PMID: 34954607 DOI: 10.1016/j.jcis.2021.12.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 12/14/2022]
Abstract
Na metal anode has attracted increasing attentions as the anode of sodium ion batteries (SIBs) due to its high theoretical capacity, low redox potential and high abundance. However, the formation of uncontrollable Na dendrite during repeated plating/stripping cycles hinders its further development and application. Herein, a sodiophilic Na metal anode host is developed by sputtering gold nanoparticles (Au NPs) into interconnected carbon nanotube modified carbon cloth (CNT/CC) to form a Au-CNT/CC architecture. Sodiophilic Au NPs effectively guide the Na metal uniform deposition and three-dimensional (3D) microporous structure offers a large surface area for nucleation and reducing the current densities. The regulated uniform Na metal deposition mechanism is investigated by the in-situ optical microscopy and simulation analysis. As a result, Au-CNT/CC electrode exhibits a low nucleation overpotential (2.2 mV) and stable cycle performance for 1600 h at 1 mA cm-2 with 2 mAh cm-2. Moreover, it even exhibits a long cycle stability for more than 800 h at 5 mA cm-2 with 2 mAh cm-2. To explore its application, a full cell coupled with a sodium vanadium phosphate coated with carbon layer (NVP@C) cathode is assembled and delivers an average discharge capacity of 80.6 mAh g-1 and coulombic efficiency of 99.6% for 400 cycles at 100 mAh g-1. Furthermore, a flexible pouch cell with Na@Au-CNT/CC as the anode is fabricated and demonstrated good flexibility and future application of wearable electronics.
Collapse
Affiliation(s)
- Haoyuan Yang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Limin Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Hui Wang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Shaozhuan Huang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Tingting Xu
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Dezhi Kong
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Zhuangfei Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Jinhao Zang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Xinjian Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Ye Wang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
11
|
ZnO Nano-Flowers Assembled on Carbon Fiber Textile for High-Performance Supercapacitor’s Electrode. COATINGS 2021. [DOI: 10.3390/coatings11111337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Herein, a crystalline nano-flowers structured zinc oxide (ZnO) was directly grown on carbon fiber textile (CFT) substrate via a simple hydrothermal process and fabricated with a binder-free electrode (denoted as ZnO@CFT) for supercapacitor (SC) utilization. The ZnO@CFT electrode revealed a 201 F·g−1 specific capacitance at 1 A·g−1 with admirable stability of >90% maintained after 3000 cycles at 10 A·g−1. These impressive findings are responsible for the exceedingly open channels for well-organized and efficient diffusion of effective electrolytic conduction via ZnO and CFT. Consequently, accurate and consistent structural and morphological manufacturing engineering is well regarded when increasing electrode materials’ effective surface area and intrinsic electrical conduction capability. The crystalline structure of ZnO nano-flowers could pave the way for low-cost supercapacitors.
Collapse
|
12
|
Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments. NANOMATERIALS 2021; 11:nano11051248. [PMID: 34068548 PMCID: PMC8151924 DOI: 10.3390/nano11051248] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 01/21/2023]
Abstract
In the past decades, the energy consumption of nonrenewable fossil fuels has been increasing, which severely threatens human life. Thus, it is very urgent to develop renewable and reliable energy storage devices with features of environmental harmlessness and low cost. High power density, excellent cycle stability, and a fast charge/discharge process make supercapacitors a promising energy device. However, the energy density of supercapacitors is still less than that of ordinary batteries. As is known to all, the electrochemical performance of supercapacitors is largely dependent on electrode materials. In this review, we firstly introduced six typical transition metal oxides (TMOs) for supercapacitor electrodes, including RuO2, Co3O4, MnO2, ZnO, XCo2O4 (X = Mn, Cu, Ni), and AMoO4 (A = Co, Mn, Ni, Zn). Secondly, the problems of these TMOs in practical application are presented and the corresponding feasible solutions are clarified. Then, we summarize the latest developments of the six TMOs for supercapacitor electrodes. Finally, we discuss the developing trend of supercapacitors and give some recommendations for the future of supercapacitors.
Collapse
|
13
|
Energy storage performance of binder-free ruthenium-oxide nano-needles based free-standing electrode in neutral pH electrolytes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Fabrication of Carbon Nanofibers Decorated with Various Kinds of Metal Oxides for Battery Applications. ENERGIES 2021. [DOI: 10.3390/en14051353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Carbon nanofibers decorated with various metal oxide nanoparticles were fabricated by combining an electrospinning technique of bicomponent polymer mixture and a sol-gel reaction and subsequent carbonization process. Electrospun polymer nanofibers consisting of polyacrylonitrile (PAN) and poly(vinyl pyrrolidone) (PVP) with controllable diameters were fabricated with PAN/PVP core/shell types via phase-separation due to the immiscibility between two polymers. The electrospun nanofibers served as supporting materials with binding sites of PVP to incorporate titanium oxide precursor. Subsequently, the carbonization of the fibers led to the formation of carbon nanofibers@TiO2 for energy application, in which rutile TiO2 nanoparticles were decorated on the surface of carbon nanofiber. Especially, this TiO2 decorated carbon nanofiber electrode exhibited excellent electrochemical property in lithium-ion batteries (≈600 mA h g−1 at C/5 rate for 100 cycles). Furthermore, the carbon nanofibers were also successfully modified with other metal oxides, including NiO, SnO2, and ZrO2 nanoparticles, in a similar manner.
Collapse
|
15
|
Guo Q, Yuan J, Tang Y, Song C, Wang D. Self-assembled PANI/CeO2/Ni(OH)2 hierarchical hybrid spheres with improved energy storage capacity for high-performance supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137525] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Mishra R, Panda P, Barman S. Synthesis of a Co 3V 2O 8/CN x hybrid nanocomposite as an efficient electrode material for supercapacitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj00181g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobalt vanadium oxide/carbon nitride composite (Co3V2O8/CNx) was synthesized by solvothermal method. This Co3V2O8/CNx composite was applied for asymmetric supercapacitor application.
Collapse
Affiliation(s)
- Ranjit Mishra
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- Bhubaneswar
- India
- Homi Bhabha National Institute (HBNI), 2nd floor, BARC Training School Complex
| | - Prajnashree Panda
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- Bhubaneswar
- India
- Homi Bhabha National Institute (HBNI), 2nd floor, BARC Training School Complex
| | - Sudip Barman
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- Bhubaneswar
- India
- Homi Bhabha National Institute (HBNI), 2nd floor, BARC Training School Complex
| |
Collapse
|
17
|
Zhang L, Wei K, Yin J, Zhou J, Zhang L, Li J, Jiao T. Chemical Vapor Deposition-Assisted Fabrication of Self-Assembled Co/MnO@C Composite Nanofibers as Advanced Anode Materials for High-Capacity Li-Ion Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14342-14351. [PMID: 33205652 DOI: 10.1021/acs.langmuir.0c02691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Constructing the nanostructure of transition metal oxides for high energy density lithium-ion batteries has been widely studied recently. Prompted by the idea that the transition metal can serve as a catalyzer influence on the reversibility of solid-electrolyte interphase films, Co/MnO@C composite nanofibers were designed by electrospinning and chemical vapor deposition methods. The Co/MnO@C electrode showed superior electrochemical performance with a large capacity increase for the first 400 cycles and a high rate performance of 1345 mA h g-1 at 1000 mA g-1. There was no obvious decay of capacity over the whole 1000 cycles, demonstrating the excellent cycling stability of the samples. The new design and synthesis of the anodic materials may offer a prototype for high-performance and strong-stability batteries.
Collapse
Affiliation(s)
- Lun Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Kuo Wei
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Juanjuan Yin
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jingxin Zhou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Lexin Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jinghong Li
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
18
|
Zhang W, Li Z, Chen J, Wang X, Li X, Yang K, Li L. Three-dimensional CoNi alloy nanoparticle and carbon nanotube decorated N-doped carbon nanosheet arrays for use as bifunctional electrocatalysts in wearable and flexible Zn-air batteries. NANOTECHNOLOGY 2020; 31:185703. [PMID: 31945747 DOI: 10.1088/1361-6528/ab6cd9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel three-dimensional (3D) bifunctional electrocatalyst, CoNi alloy nanoparticle and carbon nanotube decorated N-doped carbon nanosheet arrays on carbon cloth (CoNi alloy/NCNSAs/CC) derived from polymetallic organic frameworks, is firstly prepared. The CoNi alloy/NCNSAs/CC-800 fabricated by pyrolyzing at 800 °C exhibits an oxygen reduction reaction (ORR, limiting current density) of 6.5 mA cm-2 and a superior oxygen evolution reaction (OER, at 10 mA cm-2) of 1.51 V, as well as a smaller potential difference of 0.676 V between OER and ORR half-wave potential, outperforming previous self-supporting cathodes. Flexible Zn-air batteries (FZABs) assembled with the CoNi alloy/NCNSAs/CC-800 exhibit higher energy density (98.8 mW cm-2) and higher capacity (879 mAh g-1), as well as excellent mechanical cycle ability (lower voltage gap of 0.66 V during the charge/discharge cycles at flat and folded state), significantly outstripping all other FZABs with self-supporting electrodes currently reported. Such a remarkable performance is ascribed to the 3D hierarchical nanostructure which promotes mass transport, the higher graphitization facilitating electronic mobility and the evenly dispersed active sites which accelerate kinetic reactions. So CoNi alloy/NCNSAs/CC-800 is a promising cathode candidate for ideal wearable energy devices and has great potential application in the field of electrochemical energy storage and conversion.
Collapse
Affiliation(s)
- Wenming Zhang
- National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, Hebei 071002, People's Republic of China. National & Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding, Hebei 071002, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|