1
|
Chiu YH, Chung RJ, Kongvarhodom C, Saukani M, Yougbaré S, Chen HM, Wu YF, Lin LY. Facile Combination of Bismuth Vanadate with Nickel Tellurium Oxide for Efficient Photoelectrochemical Catalysis of Water Oxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49249-49261. [PMID: 39235429 PMCID: PMC11420875 DOI: 10.1021/acsami.4c07117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
Bismuth vanadate (BVO) having suitable band edges is one of the effective photocatalysts for water oxidation, which is the rate-determining step in the water splitting process. Incorporating cocatalysts can reduce activation energy, create hole sinks, and improve photocatalytic ability of BVO. In this work, the visible light active nickel tellurium oxide (NTO) is used as the cocatalyst on the BVO photoanode to improve photocatalytic properties. Different NTO amounts are deposited on the BVO to balance optical and electrical contributions. Higher visible light absorbance and effective charge cascades are developed in the NTO and BVO composite (NTO/BVO). The highest photocurrent density of 6.05 mA/cm2 at 1.23 V versus reversible hydrogen electrode (VRHE) and the largest applied bias photon-to-current efficiency (ABPE) of 2.13% are achieved for NTO/BVO, while BVO shows a photocurrent density of 4.19 mA/cm2 at 1.23 VRHE and ABPE of 1.54%. Excellent long-term stability under light illumination is obtained for NTO/BVO with photocurrent retention of 91.31% after 10,000 s. The photoelectrochemical catalytic mechanism of NTO/BVO is also proposed based on measured band structures and possible interactions between NTO and BVO. This work has depicted a novel cocatalytic BVO system with a new photocharging material and successfully achieves high photocurrent densities for catalyzing water oxidation.
Collapse
Affiliation(s)
- Yu-Hsuan Chiu
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Ren-Jei Chung
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Chutima Kongvarhodom
- Department
of Chemical Engineering, King Mongkut’s
University of Technology Thonburi, 126 Pracha-u-thit, Toong-kru, Bangkok 10140, Thailand
- Department
of Chemical Engineering, University of New
Brunswick, Fredericton, New Brunswick E3B5A3, Canada
| | - Muhammad Saukani
- Department
of Mechanical Engineering, Faculty of Engineering, Universitas Islam Kalimantan MAB, Jl. Adhyaksa No. 2, Banjarmasin 70124, Indonesia
| | - Sibidou Yougbaré
- Institut
de Recherche en Sciences de la Santé (IRSS-DRCO)/Nanoro, Ouagadougou 03 7192-03, Burkina Faso
| | - Hung-Ming Chen
- Gingen Technology
Co., LTD., Rm. 7, 10F.,
No. 189, Sec. 2, Keelung Road, Xinyi District, Taipei 11054, Taiwan
| | - Yung-Fu Wu
- Department
of Chemical Engineering, Ming Chi University
of Technology, New Taipei
City 24301, Taiwan
| | - Lu-Yin Lin
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| |
Collapse
|
2
|
Tian K, Wu L, Chai H, Gao L, Wang M, Niu H, Chen L, Jin J. Enhancement of charge separation and hole utilization in a Ni 2P 2O 7-Nd-BiVO 4 photoanode for efficient photoelectrochemical water oxidation. J Colloid Interface Sci 2023; 644:124-133. [PMID: 37105036 DOI: 10.1016/j.jcis.2023.04.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
It is necessary for photoelectrochemical (PEC) water splitting to reduce the electron-hole recombination rate and enhance the water oxidation reaction kinetics. Here, we prepared Ni2P2O7-Nd-BiVO4 composite photoanodes by coupling Ni2P2O7 co-catalysts to neodymium (Nd)-doped BiVO4 surfaces through photo-assisted electrodeposition. The Ni2P2O7-Nd-BiVO4 photoanode exhibits a high photocurrent density of 3.6 mA cm-2 at 1.23 V vs reversible hydrogen electrode (RHE), which is three times higher than that of the bare BiVO4 (1.2 mA cm-2). Detailed characterizations demonstrate that Nd doping reduces the band gap, significantly increases the carrier density and effectively reduces the charge transfer resistance. More importantly, the Ni2P2O7 co-catalyst has multiple roles. Specifically, it can act as a hole extraction layer to accelerate hole migration and inhibit hole-electron recombination. At the same time, it significantly improves the water oxidation reaction kinetics. In addition, it also provides more water oxidation active sites. This work provides ideas for the design and study of efficient BiVO4-based photoanodes.
Collapse
Affiliation(s)
- Kaige Tian
- College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, PR China
| | - Lan Wu
- College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, PR China.
| | - Huan Chai
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Lili Gao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Meng Wang
- College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, PR China
| | - Huilin Niu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Li Chen
- College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, PR China
| | - Jun Jin
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
3
|
Wang S, She L, Zheng Q, Song Y, Yang Y, Chen L. Ag-Doped CuV 2O 6 Nanowires for Enhanced Visible-Light Photocatalytic CO 2 Reduction. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shuang Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Le She
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Qiao Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Yingying Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Yi Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Limiao Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| |
Collapse
|
4
|
Enhanced photocurrent density for photoelectrochemical catalyzing water oxidation using novel W-doped BiVO4 and metal organic framework composites. J Colloid Interface Sci 2022; 624:515-526. [DOI: 10.1016/j.jcis.2022.05.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022]
|
5
|
Tao SM, Chung RJ, Lin LY. Heteroatom Doping Strategy for Establishing Hematite Homojunction as Efficient Photocatalyst for Accelerating Water Splitting. Chem Asian J 2020; 15:3853-3860. [PMID: 32955150 DOI: 10.1002/asia.202001021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/11/2020] [Indexed: 11/10/2022]
Abstract
Hematite (α-Fe2 O3 ) is one of the promising photocatalysts for water oxidation, owing to its stable, abundant and visible-light responsive features. Enhancing electrical conductivity and accelerating oxidation evolution kinetics are expected to improve photocatalytic ability of hematite toward water oxidation. In this work, strategies of doping heteroatoms and developing pn homojunction are adopted to enhance the photocatalytic ability of hematite electrodes. The Ti and Mg dopants are separately incorporated in two layers of hematite electrodes via two-step hydrothermal reaction and one-step annealing process. The effect of regrowth time for synthesizing Mg-doped hematite on the photoelectrochemical performance of Mg-doped and Ti-doped hematite (Mg-Fe2 O3 /Ti-Fe2 O3 ) electrode is studied. The size of rod-like structure and gaps in-between play important roles on the photocatalytic ability of Mg-Fe2 O3 /Ti-Fe2 O3 . The optimized Mg-Fe2 O3 /Ti-Fe2 O3 electrode is prepared by using merely 10 min for synthesizing the Mg-doped hematite top layer, which shows the highest photocurrent density of 2.83 mA/cm2 at 1.60 VRHE along with the highest carrier density of 5.89×1016 cm-3 and the smallest charge-transfer resistance. This largely improved photoelectrochemical performance is attributed to the more donor generation with heteroatom-doping and more efficient charge cascade with homojunction establishment. Other p-type metals are encouraged to dope in hematite as the second layer to couple with the n-type Ti-doped hematite for developing efficient pn homojunction and improve the photocatalytic ability of hematite in the near future.
Collapse
Affiliation(s)
- Shang-Mao Tao
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Lu-Yin Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan.,Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, Taipei, Taiwan
| |
Collapse
|