1
|
Lv Z, Yang D, Mo J, Jin Z, Chang S. Construction of TiO 2/WO 3/TiO 2 double heterojunction films for excellent electrochromic performance. Sci Rep 2024; 14:11443. [PMID: 38769384 PMCID: PMC11106074 DOI: 10.1038/s41598-024-61911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
Electrochromic devices are applied extensively to camouflages, smart windows, heat insulation layers, and automobile rearview mirrors, etc. The amorphous WO3 is a very attractive electrochromic material, whereas it suffers from degradation of optical modulation and reversibility on ion exchange owing to those deep trapped ions with irreversible reaction behavior. Herein, we designed and, by using magnetron sputtering, prepared a composite film with TiO2/WO3/TiO2 double heterojunctions, which is capable of eliminating the deep trapped ions by itself under ultraviolet light (UV) assistance. The electrochromic device based on this composite film, after being recovery by short-time UV irradiation, can maintain a high transmission modulation of 94.72% after 7000 cycles of the voltammetry measurement. This feature allows the device to maintain its initial electrochromic performance after prolonged use. Moreover, the double heterojunction structure can reduce colouring time and enormously improve the colouration efficiency (CE) of electrochromic devices. Experimental research shows that when the thickness of the bottom and upper TiO2 layer of the WO3 film was 145.5 nm and 97.0 nm, respectively, the CE of electrochromic devices reached a perfectly high value (479.3 cm2/C), being much higher than that of WO3 devices (69.5 cm2/C). Functions of the TiO2/WO3/TiO2 double heterojunction in electrochromic device were investigated by combining theoretical analysis and experiment validation, and these results provide a general framework for developing and designing superior electrochromic materials and devices.
Collapse
Affiliation(s)
- Zhengqiao Lv
- School of Science, Minzu University of China, Beijing, 100081, China
| | - Di Yang
- School of Science, Minzu University of China, Beijing, 100081, China.
| | - Jianwei Mo
- School of Science, Minzu University of China, Beijing, 100081, China
| | - Ziyi Jin
- School of Science, Minzu University of China, Beijing, 100081, China
| | - Shuai Chang
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, China
| |
Collapse
|
2
|
Zhuang B, Zhang Q, Zhou K, Wang H. Preparation of a TiO 2/PEDOT nanorod film with enhanced electrochromic properties. RSC Adv 2023; 13:18229-18237. [PMID: 37333797 PMCID: PMC10274301 DOI: 10.1039/d3ra01701j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023] Open
Abstract
The designed growth of titanium dioxide (TiO2)/poly(3,4-ethylenedioxythiophene) (PEDOT) nanorod arrays has been achieved by the combination of hydrothermal and electrodeposition methods. Due to the use of one-dimensional (1D) TiO2 nanorod arrays as the template of the nanocomposites (TiO2/PEDOT), the surface area of the active materials is enlarged and the diffusion distance of the ions is shortened. The nanorod structure also contributes to increasing the length of PEDOT conjugated chains and facilitates the transfer of electrons in the conjugated chains. Consequently, the TiO2/PEDOT film delivers a shorter response time (∼0.5 s), higher transmittance contrast (∼55.5%) and long-cycle stability compared to the pure PEDOT film. In addition, the TiO2/PEDOT electrode is further developed to be a smart bi-functional electrochromic device exhibiting energy storage performance. We expect that this work may lead to new designs for powerful intelligent electrochromic energy storage devices.
Collapse
Affiliation(s)
- Biying Zhuang
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology Beijing 100124 P.R. China
| | - Qianqian Zhang
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology Beijing 100124 P.R. China
| | - Kailing Zhou
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology Beijing 100124 P.R. China
| | - Hao Wang
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology Beijing 100124 P.R. China
| |
Collapse
|
3
|
Zheng JY, Sun Q, Cui J, Yu X, Li S, Zhang L, Jiang S, Ma W, Ma R. Review on recent progress in WO 3-based electrochromic films: preparation methods and performance enhancement strategies. NANOSCALE 2022; 15:63-79. [PMID: 36468697 DOI: 10.1039/d2nr04761f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Transition metal oxides have drawn tremendous interest due to their unique physical and chemical properties. As one of the most promising electrochromic (EC) materials, tungsten trioxide (WO3) has attracted great attention due to its exceptional EC characteristics. This review summarizes the background and general concept of EC devices, and key criteria for evaluation of WO3-based EC materials. Special focus is placed on preparation techniques and performance enhancement of WO3 EC films. Specifically, four methods - nanostructuring, regulating crystallinity, fabricating hybrid films, and preparing multilayer composite structures - have been developed to enhance the EC performance of WO3 films. Finally, we offer some important recommendations and perspectives on potential research directions for further study.
Collapse
Affiliation(s)
- Jin You Zheng
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Qimeng Sun
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Jiameizi Cui
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaomei Yu
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Songjie Li
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Lili Zhang
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Suyu Jiang
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Wei Ma
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Renzhi Ma
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
4
|
Dong X, Wei Y, Gao J, Liu X, Zhang L, Tong Y, Lu Y. Efficient charge transfer over Cu-doped hexagonal WO3 nanocomposites for rapid photochromic response. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Yang Y, Peng Y, Jian Z, Qi Y, Xiong Y, Chen W. Novel High-Performance and Low-Cost Electrochromic Prussian White Film. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8157-8162. [PMID: 35107971 DOI: 10.1021/acsami.1c22050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Prussian white (PW), due to its low cost, easy synthesis, open structure, and fast ion extraction/interaction, is introduced to the electrochromic field. The PW films were successfully grown on indium tin oxide (ITO) glass by a facial hydrothermal method. Impressively, the PW film exhibits excellent electrochemical cycling stability without obvious decay over 10 000 cycles and a high coloration efficiency of 149.3 cm2 C-1. The film also provides the large optical transmittance contrast (over 70%) in a wide wavelength range of 650-800 nm. Furthermore, the PW film shows the rapid coloration and bleaching response. These results suggest that PW is a promising practical candidate of high-performance electrochromic material.
Collapse
Affiliation(s)
- Yixin Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, P. R. China
| | - Yuan Peng
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, P. R. China
| | - Zelang Jian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, P. R. China
| | - Yanyuan Qi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, P. R. China
| | - Yuli Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, P. R. China
| | - Wen Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, P. R. China
| |
Collapse
|
6
|
Surface composite and morphology tuning of tungsten oxide thin films for acetone gas sensing. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
A High-Efficiency TiO 2/ZnO Nano-Film with Surface Oxygen Vacancies for Dye Degradation. MATERIALS 2021; 14:ma14123299. [PMID: 34203670 PMCID: PMC8232121 DOI: 10.3390/ma14123299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
Photocatalytic degradation of organic pollutants in water is a highly efficient and green approach. However, the low quantum efficiency is an intractable obstacle to lower the photocatalytic efficiency of photocatalysts. Herein, the TiO2/ZnO heterojunction thin films combined with surface oxygen vacancies (OVs) were prepared through magnetron sputtering, which was designed to drive rapid bulk and surface separation of charge carriers. The morphology and structural and compositional properties of films were investigated via different techniques such as SEM, XRD, Raman, AFM, and XPS. It has been found that by controlling the O2/Ar ratio, the surface morphology, thickness, chemical composition, and crystal structure can be regulated, ultimately enhancing the photocatalytic performance of the TiO2/ZnO heterostructures. In addition, the heterojunction thin film showed improved photocatalytic properties compared with the other nano-films when the outer TiO2 layer was prepared at an O2/Ar ratio of 10:35. It degraded 88.0% of Rhodamine B (RhB) in 90 min and 90.8% of RhB in 120 min. This was attributed to the heterojunction interface and surface OVs, which accelerated the separation of electron–hole (e–h) pairs.
Collapse
|