1
|
Li J, Yu H, Lv Y, Cai Z, Shen Y, Ruhlmann L, Gan L, Liu M. Electrode materials for electrochromic supercapacitors. NANOTECHNOLOGY 2024; 35:152001. [PMID: 38150723 DOI: 10.1088/1361-6528/ad18e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
Smart energy storage systems, such as electrochromic supercapacitor (ECSC) integrated technology, have drawn a lot of attention recently, and numerous developments have been made owing to their reliable performance. Developing novel electrode materials for ECSCs that embed two different technologies in a material is an exciting and emerging field of research. To date, the research into ECSC electrode materials has been ongoing with excellent efforts, which need to be systematically reviewed so that they can be used to develop more efficient ECSCs. This mini-review provides a general composition, main evaluation parameters and future perspectives for electrode materials of ECSCs as well as a brief overview of the published reports on ECSCs and performance statistics on the existing literature in this field.
Collapse
Affiliation(s)
- Jianhang Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Hangzhou Plastics Industry Co., Ltd, Hangzhou, People's Republic of China
| | - Haixin Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yaokang Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zhiwei Cai
- Zhejiang Institute for Food and Drug Control, Key Laboratory of Drug Contacting Materials Quality Control of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yimin Shen
- Shaoxing Jinye Environmental Protection Technology Co., Ltd, No. 173, Zhenghai Road, Binhai Industrial Zone, Keqiao District, Shaoxing, 312073, People's Republic of China
| | - Laurent Ruhlmann
- Institut de Chimie (UMR au CNRS n°7177), Université de Strasbourg, 4 rue Blaise Pascal CS 90032, F-67081 Strasbourg Cedex, France
| | - Lihua Gan
- Hangzhou Plastics Industry Co., Ltd, Hangzhou, People's Republic of China
| | - Mingxian Liu
- School of Chemical Science and Engineering, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Wang J, Zhu R, Gao Y, Jia Y, Cai G. Unveiling the Multistep Electrochemical Desorption Mechanism of Cubic NiO Films for Transmissive-to-Black Electrochromic Energy Storage Devices. J Phys Chem Lett 2023; 14:2284-2291. [PMID: 36826414 DOI: 10.1021/acs.jpclett.3c00050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electrochromic smart windows offer dynamic control of sunshine and solar heat in modern architecture. Yet, how to obtain aesthetically pleasing color tuning states such as gray and black is a great challenge, and the corresponding desorption mechanism in electrochromism is still not well understood. Here, we report one transmissive-to-black NiO electrochromic film assembled by a facile and low-cost electrostatic spray technology, which achieves ultralarge optical modulation, high coloration efficiency, and remarkable energy storage capacity. By in-depth experimental analyses and the first-principle calculations, multistep electrochemical desorption mechanisms of OH- and electrochromic switching kinetics of the NiO film were unveiled. Additionally, the assembled NiO film-based smart energy storage indicator can visually display its energy storage level in real time. Our obtained NiO films and subsequent devices can serve as potential candidates in a broad range of innovative electrochromic applications including multifunctional smart windows, energy-efficient displays, energy-storage indicators, electronic labels, etc.
Collapse
Affiliation(s)
- Jinhui Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Rui Zhu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Yi Gao
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
- International Laboratory for Quantum Functional Materials of Henan and School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Guofa Cai
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| |
Collapse
|
3
|
Electrochemical performance improvement of completely spray-deposited FTO/Zn-doped Co3O4 double layer thin films: influence of Zn doping. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
4
|
Ashish Kumar A, Dakeshwar Kumar V, Berdimurodov E. Recent trends in noble-metals based composite materials for supercapacitors: A comprehensive and development review. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2022.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Zhao F, Cheng Z, Xu G, Liu Y, Han G. A facile electrochemical lithiation method to prepare porous nickel oxide electrodes with high electrochromic performance. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
Xu K, Wang L, Xiong S, Ge C, Wang L, Wang B, Wang W, Chen M, Liu G. Hydrothermally Prepared Ultra-stable Multilayer Nanoflake NiO-based Electrochromic Films. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Zhao J, Wang X, Liu L, Wang Z, Gao W, Liu W, Zhang Y, Wang Y. The influence of calcination temperature on the optical, magnetic and capacitive properties of NiO nanocrystals prepared with gas–liquid diffusion method. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
El Nady J, Shokry A, Khalil M, Ebrahim S, Elshaer AM, Anas M. One-step electrodeposition of a polypyrrole/NiO nanocomposite as a supercapacitor electrode. Sci Rep 2022; 12:3611. [PMID: 35246573 PMCID: PMC8897393 DOI: 10.1038/s41598-022-07483-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/21/2022] [Indexed: 11/09/2022] Open
Abstract
An electrochemical deposition technique was used to fabricate polypyrrole (Ppy)/NiO nanocomposite electrodes for supercapacitors. The nanocomposite electrodes were characterized and investigated by Fourier transform infrared spectroscopy (FTIR), X-ray Diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). The performance of supercapacitor electrodes of Ppy/NiO nanocomposite was enhanced compared with pristine Ppy electrode. It was found that the Ppy/NiO electrode electrodeposited at 4 A/cm-2 demonstrated the highest specific capacitance of 679 Fg-1 at 1 Ag-1 with an energy density of 94.4 Wh kg-1 and power density of 500.74 W kg-1. Capacitance retention of 83.9% of its initial capacitance after 1000 cycles at 1 Ag-1 was obtained. The high electrochemical performance of Ppy/NiO was due to the synergistic effect of NiO and Ppy, where a rich pores network-like structure made the electrolyte ions more easily accessible for Faradic reactions. This work provided a simple approach for preparing organic-inorganic composite materials as high-performance electrode materials for electrochemical supercapacitors.
Collapse
Affiliation(s)
- Jehan El Nady
- Electronic Materials Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt.
| | - Azza Shokry
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, 163 Horrya Avenue, P.O. Box832, El-Shatby, Alexandria, Egypt
| | - Marwa Khalil
- Nanotechnology and Composite Materials Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El Arab City, Alexandria, Egypt
| | - S Ebrahim
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, 163 Horrya Avenue, P.O. Box832, El-Shatby, Alexandria, Egypt
| | - A M Elshaer
- Department of Computer Engineering, Higher Institute of Engineering and Technology, P.O. Box 22751, El-Boheira, Egypt
| | - M Anas
- Physics Department, Faculty of Science, Alexandria University, Moharram Bek, Alexandria, 21511, Egypt
| |
Collapse
|
9
|
Reddy NR, Reddy PM, Mandal TK, Reddy KR, Shetti NP, Saleh TA, Joo SW, Aminabhavi TM. Synthesis of novel Co 3O 4 nanocubes-NiO octahedral hybrids for electrochemical energy storage supercapacitors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113484. [PMID: 34391101 DOI: 10.1016/j.jenvman.2021.113484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Fabrication of novel metal oxide nanostructured composites is a proficient approach to develop efficient energy storage devices and development of cost-free and eco-friendly metal oxide nanostructures for supercapacitor applications received considerable attention in recent years. The Co3O4 nanocubes-NiO octahedral structured composite was constructed using facile and one-step calcination process. Cyclic voltammetry, charge-discharge, and electrochemical impedance spectral techniques have been employed to analyze the specific capacitance of the synthesized nanostructures and the composites. Specific capacitance and cycling stability of the composites were evaluated with the pristine Co3O4 and NiO nanostructures. The composite showed a specific capacitance of 832 F g-1 at a current density of 0.25 A g-1, which was ~1.5 and ~1.9-times higher than pristine Co3O4 nanocubes and NiO octahedral structure, respectively. On the other hand, electrode showed approximately 50 % capacity retention at a higher current density (5 Ag-1) because of the uniform morphology of Co3O4 and NiO. The charge-discharge stability measurements of the composite showed an admirable specific capacitance retention capability, which was 94.5 % after 2000 continuous charge-discharge cycles at a current density of 5 A g-1. The superior electrochemical performance of the nano-composite was ascribed to synergistic effects and uniform morphology. Efficient nanostructure development using facile and one-step calcination process and electrochemical performance make the synthesized composite a promising device for supercapacitor applications.
Collapse
Affiliation(s)
- N Ramesh Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - P Mohan Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - T K Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Nagaraj P Shetti
- School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580031, Karnataka, India
| | - Tawfik A Saleh
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India.
| |
Collapse
|
10
|
Wang J, Huang Y, Han X, Zhang S, Wang M, Yan J, Chen C, Zong M. Construction of hierarchical Co 9S 8@NiO synergistic microstructure for high-performance asymmetric supercapacitor. J Colloid Interface Sci 2021; 603:440-449. [PMID: 34197992 DOI: 10.1016/j.jcis.2021.06.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 10/21/2022]
Abstract
Metal-organic frameworks (MOFs) become a research hot-spot owing to their unique properties originating from the ultra-high porosity and large specific surface area with highly accessible active sites. However, the electrochemical performance of a single component is unsatisfied when MOFs are applied as electrode material in a supercapacitor. In this work, the hierarchical hollow framework involving interconnected Co9S8 structure and NiO nanosheets (Co9S8@NiO) are successfully prepared by MOFs derived methods and proposed to electrode materials. As a result, the prepared Co9S8@NiO electrode materials exhibit a superior specific capacitance of 1627 F g-1 at a current density of 1 A g-1. Moreover, an assembled hybrid supercapacitor shows a high energy density of 51.65 Wh Kg-1 at a power density of 749.8 W Kg-1 as well as excellent long-term cycling stability with 81.79% capacity retention after 10,000 cycles. Meanwhile, we concluded that the marvelous electrochemical performance is closely associated with the unique structure of NiO, in particular, the nanosheet surface provides a superior specific surface area and rich accessible redox reaction sites, thus enlarged the contact between the surface and interface of the electrode material. Finally, two supercapacitor devices connected in series can light up four light-emitting diodes (LEDs) for about 30 min. Hence, the presented strategy represents a general route for supercapacitor electrode material with promising electrochemical performance, which can combine the MOFs template and other hierarchical nanosheets together.
Collapse
Affiliation(s)
- Jiaming Wang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Ying Huang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Xiaopeng Han
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Shuai Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Mingyue Wang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Jing Yan
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Chen Chen
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Meng Zong
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
11
|
Chen G, Zhang X, Ma Y, Song H, Pi C, Zheng Y, Gao B, Fu J, Chu PK. In-Situ Synthesis of Heterostructured Carbon-Coated Co/MnO Nanowire Arrays for High-Performance Anodes in Asymmetric Supercapacitors. Molecules 2020; 25:molecules25143218. [PMID: 32679654 PMCID: PMC7397025 DOI: 10.3390/molecules25143218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 11/23/2022] Open
Abstract
Structural design is often investigated to decrease the electron transfer depletion in/on the pseudocapacitive electrode for excellent capacitance performance. However, a simple way to improve the internal and external electron transfer efficiency is still challenging. In this work, we prepared a novel structure composed of cobalt (Co) nanoparticles (NPs) embedded MnO nanowires (NWs) with an N-doped carbon (NC) coating on carbon cloth (CC) by in situ thermal treatment of polydopamine (PDA) coated MnCo2O4.5 NWs in an inert atmosphere. The PDA coating was carbonized into the NC shell and simultaneously reduced the MnCo2O4.5 to Co NPs and MnO NWs, which greatly improve the surface and internal electron transfer ability on/in MnO boding well supercapacitive properties. The hybrid electrode shows a high specific capacitance of 747 F g−1 at 1 A g−1 and good cycling stability with 93% capacitance retention after 5,000 cycles at 10 A g−1. By coupling with vanadium nitride with an N-doped carbon coating (VN@NC) negative electrode, the asymmetric supercapacitor delivers a high energy density of 48.15 Wh kg−1 for a power density of 0.96 kW kg−1 as well as outstanding cycling performance with 82% retention after 2000 cycles at 10 A g−1. The electrode design and synthesis suggests large potential in the production of high-performance energy storage devices.
Collapse
Affiliation(s)
- Guoqing Chen
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China; (G.C.); (Y.M.); (H.S.); (C.P.); (B.G.); (J.F.)
| | - Xuming Zhang
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China; (G.C.); (Y.M.); (H.S.); (C.P.); (B.G.); (J.F.)
- Correspondence: (X.Z.); (Y.Z.); (P.K.C.)
| | - Yuanhang Ma
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China; (G.C.); (Y.M.); (H.S.); (C.P.); (B.G.); (J.F.)
| | - Hao Song
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China; (G.C.); (Y.M.); (H.S.); (C.P.); (B.G.); (J.F.)
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Materials Science & Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chaoran Pi
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China; (G.C.); (Y.M.); (H.S.); (C.P.); (B.G.); (J.F.)
| | - Yang Zheng
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China; (G.C.); (Y.M.); (H.S.); (C.P.); (B.G.); (J.F.)
- Correspondence: (X.Z.); (Y.Z.); (P.K.C.)
| | - Biao Gao
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China; (G.C.); (Y.M.); (H.S.); (C.P.); (B.G.); (J.F.)
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Materials Science & Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jijiang Fu
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China; (G.C.); (Y.M.); (H.S.); (C.P.); (B.G.); (J.F.)
| | - Paul K. Chu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Materials Science & Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Correspondence: (X.Z.); (Y.Z.); (P.K.C.)
| |
Collapse
|