1
|
Song Z, Wang Z, Yu R. Strategies for Advanced Supercapacitors Based on 2D Transition Metal Dichalcogenides: From Material Design to Device Setup. SMALL METHODS 2023:e2300808. [PMID: 37735990 DOI: 10.1002/smtd.202300808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/15/2023] [Indexed: 09/23/2023]
Abstract
Recently, the development of new materials and devices has become the main research focus in the field of energy. Supercapacitors (SCs) have attracted significant attention due to their high power density, fast charge/discharge rate, and excellent cycling stability. With a lamellar structure, 2D transition metal dichalcogenides (2D TMDs) emerge as electrode materials for SCs. Although many 2D TMDs with excellent energy storage capability have been reported, further optimization of electrode materials and devices is still needed for competitive electrochemical performance. Previous reviews have focused on the performance of 2D TMDs as electrode materials in SCs, especially on their modification. Herein, the effects of element doping, morphology, structure and phase, composite, hybrid configuration, and electrolyte are emphatically discussed on the overall performance of 2D TMDs-based SCs from the perspective of device optimization. Finally, the opportunities and challenges of 2D TMDs-based SCs in the field are highlighted, and personal perspectives on methods and ideas for high-performance energy storage devices are provided.
Collapse
Affiliation(s)
- Zhifan Song
- Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30, Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zumin Wang
- Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30, Xueyuan Road, Haidian District, Beijing, 100083, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Ranbo Yu
- Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30, Xueyuan Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
2
|
Wang H, Ren JH, Hou JA, Sun CZ, Liu YY, Zhang CY. Morphology-controlled Co0.5Ni0.5S2-C double-shell porous microspheres for the construction of high-performance asymmetric supercapacitors. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
3
|
Iqbal H, Nazim A, Haq MU, Hassan A, Mahmood S, Muhammad Z, Iqbal MF. Electrochemical Characteristics of Polyaniline Nanofibers and Active Chromium Sulfide Nanoparticles for Asymmetric Supercapacitor Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Hifza Iqbal
- Department of Physics Lahore Garrison University, Sector C, DHA Phase-VI Lahore Pakistan
| | - Amina Nazim
- Department of Physics Lahore Garrison University, Sector C, DHA Phase-VI Lahore Pakistan
| | - Mahmood Ul Haq
- College of Chemistry and Life Sciences Zhejiang Normal University 321004 Jinhua China
| | - Ather Hassan
- Department of Physics Allama Iqbal Open University Islamabad Pakistan
| | - Sajid Mahmood
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Department of Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Zahir Muhammad
- Hefei Innovation Research Institute School of Microelectronics Beihang University Hefei 230013 PR China
| | - Muhammad Faisal Iqbal
- College of Chemistry and Life Sciences Zhejiang Normal University 321004 Jinhua China
| |
Collapse
|
4
|
Li J, Li Z, Tang S, Wang T, Wang K, Pan L, Wang C. Sodium titanium phosphate nanocube decorated on tablet-like carbon for robust sodium storage performance at low temperature. J Colloid Interface Sci 2023; 629:121-132. [PMID: 36152570 DOI: 10.1016/j.jcis.2022.09.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
Abstract
Sodium-ion batteries, featuring resource abundance and similar working mechanisms to lithium-ion batteries, have gained extensive interest in both scientific exploration and industrial applications. However, the extremely sluggish reaction kinetics of charge carrier (Na+) at subzero temperatures significantly reduces their specific capacities and cycling life. Herein, this study presents a novel hybrid structure with sodium titanium phosphate (NaTi2(PO4)3, NTP) nanocube in-situ decorated on tablet-like carbon (NTP/C), which manifests superior sodium storage performances at low temperatures. At even -25 °C, a stable cycling with a specific capacity of 94.3 mAh/g can still be maintained after 200 cycles at 0.5 A/g, delivering a high capacity retention of 91.5 % compared with that at room temperature, along with an excellent rate capability. Generally, the superionic conductor structure, flat voltage plateaus, as well as the conductive carbonaceous framework can efficiently facilitate the charge transfer, accelerate the diffusion of Na+, and decrease the electrochemical polarization. Moreover, further investigations on diffusion kinetics, solid electrolyte interface layer, and the interaction between NTP and carbonaceous skeleton reveal its high Na+ diffusion coefficient, robust solid electrolyte interface, and strong electronic interaction, thus contributing to the superior capacity retentions at subzero temperatures.
Collapse
Affiliation(s)
- Jiabao Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China.
| | - Ziqian Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China
| | - Shaocong Tang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China
| | - Tianyi Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China
| | - Kai Wang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Chengyin Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China.
| |
Collapse
|
5
|
R. R, Prasannakumar AT, Mohan RR, V. M, Varma SJ. Advances in 2D Molybdenum Disulfide‐Based Functional Materials for Supercapacitor Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202203068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rohith. R.
- Materials for Energy Storage and Optoelectronic Devices Group Department of Physics Sanatana Dharma College University of Kerala Alappuzha Kerala 688003 India
- Research Centre University of Kerala Thiruvananthapuram Kerala 695034 India
| | - Anandhu Thejas Prasannakumar
- Materials for Energy Storage and Optoelectronic Devices Group Department of Physics Sanatana Dharma College University of Kerala Alappuzha Kerala 688003 India
- Research Centre University of Kerala Thiruvananthapuram Kerala 695034 India
| | - Ranjini R. Mohan
- Division for Research in Advanced Materials Department of Physics Cochin University of Science and Technology Kochi Kerala 688022 India
| | - Manju. V.
- Materials for Energy Storage and Optoelectronic Devices Group Department of Physics Sanatana Dharma College University of Kerala Alappuzha Kerala 688003 India
- Research Centre University of Kerala Thiruvananthapuram Kerala 695034 India
| | - Sreekanth J. Varma
- Materials for Energy Storage and Optoelectronic Devices Group Department of Physics Sanatana Dharma College University of Kerala Alappuzha Kerala 688003 India
- Research Centre University of Kerala Thiruvananthapuram Kerala 695034 India
| |
Collapse
|
6
|
Zhu X, Liu S. Tremella-like 2D Nickel-Copper Disulfide with Ultrahigh Capacity and Cyclic Retention for Hybrid Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43265-43276. [PMID: 36098979 DOI: 10.1021/acsami.2c10981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) disulfides possess unique physical and chemical properties and are widely used in electronic and photoelectric devices. Tuning the composition and optimizing the structure of the disulfides are feasible approaches to designing target sulfides for hybrid supercapacitors. This work synthesizes the tremella-like nanosheet-connected (CuxNi1-x)S2 via solvothermal and sulfur-vapor vulcanization. The 2D (CuxNi1-x)S2 electrode performs a high reversible capacity (526.0 mA h g-1 at 1 A g-1), decent capacity retention (75.6%) at 10 A g-1, and prolonged cyclic retention (94.4% over 15,000 cycles), which is higher than that of (CuxNi1-x)O and monometallic sulfides of NiS2 and CuS. The elevated electrochemical properties of (CuxNi1-x)S2 are attributed to the optimized composition with increased redox reaction, enlarged lattice distance, abundant active sites, and attractive electronic and ionic conductivity. Also, (CuxNi1-x)S2 and active carbon (AC) are assembled to form a hybrid supercapacitor (HSC). The (CuxNi1-x)S2//AC HSC demonstrates a maximum specific capacitance of 231.0 F g-1 at 1 A g-1 and a high energy density of 82.4 W h kg-1 at a power density of 1.82 kW kg-1. Outstanding cyclic retentions of 94.9 and 84.5% after 8000 and 10,000 cycles are also obtained. In conclusion, this result suggests a facile routine for preparing a novel 2D layer material of (CuxNi1-x)S2 with outstanding specific capacity and cycling performance for hybrid supercapacitors.
Collapse
Affiliation(s)
- Xi Zhu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400700, China
| | - Shuangyi Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400700, China
| |
Collapse
|
7
|
Li S, Yang Y, Hu Z, Li S, Ding F, Xiao X, Si P, Ulstrup J. Hetero-structured NiS2/CoS2 nanospheres embedded on N/S co-doped carbon nanocages with ultra-thin nanosheets for hybrid supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Lian Y, Zheng Y, Wang Z, Hu Y, Zhao J, Zhang H. Multidefect N-Nb 2 O 5- x @CNTs Incorporated into Capillary Transport Framework for Li + /Na + Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201450. [PMID: 35441447 DOI: 10.1002/smll.202201450] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Indexed: 06/14/2023]
Abstract
As an ion-embedded material with small strain and low transport energy barrier, the limited ion transport rate and conductivity of niobium pentaoxide (Nb2 O5 ) are the main factors limiting its application in lithium/sodium storage systems. In this work, the microsphere composites (N-Nb2 O5- x @CNTs) are prepared by combining Nb2 O5 , rich in nitrogen doping and vacancy defects, with carbon nanotubes (CNTs) penetrating the bulk phase. With the capillary effect, CNTs can enable the rapid electrolyte infiltration into the microspheres, thus shorting the Li+ /Na+ transport path. In addition, CNTs also hinder the direct contact between the electrolyte and Nb2 O5 , and inhibit the irreversible reaction. Meanwhile, nitrogen doping and oxygen vacancy defects reduce the energy barrier of Li+ /Na+ transport, and improve their transport rate, proved by density functional theory. Highly conductive CNTs and unpaired electrons from defects also ameliorate the insulation property of Nb2 O5 . Therefore, N-Nb2 O5- x @CNTs display good electrochemical performance in both Li/Na half-cell and Li/Na hybrid capacitors. Interestingly, kilogram-scale microsphere composites can be produced in laboratory conditions by using industrial grade raw materials, implying its potential for practical application.
Collapse
Affiliation(s)
- Yue Lian
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Yujing Zheng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Zhifeng Wang
- Testing Center of Yangzhou University, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Yongfeng Hu
- Department of Chemical Engineering, University of Saskatchewan, Saskatoon, S7N 2V3, Canada
| | - Jing Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Huaihao Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| |
Collapse
|
9
|
Ultrafast and stable ion/electron transport of MnNb 2O 6 in LIC/SC via interface protection and lattice defects. J Colloid Interface Sci 2022; 606:77-86. [PMID: 34390997 DOI: 10.1016/j.jcis.2021.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 01/13/2023]
Abstract
Interface protection and kinetics optimization could effectively relieve the shortcomings of bimetallic oxides, such as low conductivity, strong hydrophobicity, insufficient ion diffusion rate and metal interatomic instability. In this work, ultrathin amorphous carbon shells and lattice defects (heteroatoms and vacancies) are introduced into the MnNb2O6 nanofiber surface to improve the electron/ion kinetic stability, conductivity and electrochemical activity. The ultrathin carbon interface protects unstable lattice with defects, thus restraining the adverse reaction between bimetallic oxides and electrolyte. Especially, ultrathin amorphous carbon layer enhances the stability and uniformity of ion transport as the substitute of solid-liquid ion exchange membrane. Lattice defects (N doping and oxygen vacancy) also enhance the ionic kinetics of the material. MnNb2O6 nanofiber, being optimized by interface protection and lattice defects, shows excellent electrochemical performances in Lithium-ion battery and supercapacitor.
Collapse
|
10
|
Chen X, Cheng N, Ding YL, Liu Z. NiS2 microsphere/carbon nanotubes hybrids with reinforced concrete structure for potassium ion storage. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Xu J, Xu X, Du Y, Wu D, Ma H, Ren X, Li Y, Wei Q. Carbon-doped tin disulfide nanoflowers: a heteroatomic doping strategy for improving the electrocatalytic performance of nitrogen reduction to ammonia. NEW J CHEM 2022. [DOI: 10.1039/d2nj02478k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, hydrophobic carbon-doped tin disulfide (C-SnS2) was fabricated for the first time and adopted as an advanced catalyst for the eNRR.
Collapse
Affiliation(s)
- Jingyi Xu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Xiaolong Xu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yu Du
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Jinan 250022, Shandong, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Jinan 250022, Shandong, China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Jinan 250022, Shandong, China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Jinan 250022, Shandong, China
| | - Yuyang Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Jinan 250022, Shandong, China
| |
Collapse
|
12
|
Li J, Tang S, Li Z, Wang C, Pan L. Boosting the lithium storage performance by synergistically coupling ultrafine heazlewoodite nanoparticle with N, S co-doped carbon. J Colloid Interface Sci 2021; 604:368-377. [PMID: 34265691 DOI: 10.1016/j.jcis.2021.07.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022]
Abstract
Transition metal sulfides, as an important class of inorganics, have been shown to be potential high-performance electrode candidates for lithium-ion batteries (LIBs) in account of their high activity towards lithium storage, rich types and diverse structures. Despite these advantages, structure degradation related with volume variations upon electrochemical cycling restricts their further development. In this present study, a unique hybrid structure with ultrafine heazlewoodite nanoparticles (less than 10 nm) in-situ confined in nitrogen and sulfur dual-doped carbon (Ni3S2@NSC) was constructed though a facile pyrolysis process, using a novel Ni-based metal chelates as the precursor. Specifically, enhanced structure stability, shortened Li+ migration distance and improved reaction dynamics can be obtained simultaneously in the designed structure, thereby allowing to realize high lithium storage performance. Consequently, a remarkable reversible capacity of 955.9 mAh g-1 (0.1 A g-1 after 100 cycles) and a superior long-term cycling stability up to 1200 cycles (863.7 mAh g-1 at 1.0 A g-1) are obtained. Importantly, the fundamental understanding on the improved lithium storage of Ni3S2@NSC based on the synergistic coupling reveals that the combination between Ni3S2 and NSC at the hetero-interface through the doped sulfur atoms contributes to the integrity of electrode and improved kinetics.
Collapse
Affiliation(s)
- Jiabao Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China.
| | - Shaocong Tang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China
| | - Ziqian Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China
| | - Chengyin Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China.
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
13
|
Tian J, Xing X, Sun Y, Zhang X, Li Z, Yang M, Zhang G. Strongly coupled Fe-doped NiS 2/MoS 2 composite for high-efficiency water splitting. Chem Commun (Camb) 2021; 58:557-560. [PMID: 34908047 DOI: 10.1039/d1cc05312d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We developed a simple method to fabricate a strongly coupled Fe-doped NiS2/MoS2 composite by introducing dual confinement effects during the vapor vulcanization of precursors, which involves the controlled release of metal species and the in situ formation of an N-doped carbon layer. The Fe-doped NiS2/MoS2 composite exhibited a much-enhanced hydrogen/oxygen evolution reaction performance.
Collapse
Affiliation(s)
- Jinrui Tian
- Al-ion Battery Research Center, Department of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, Shandong 266590, China. .,School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin 132012, China.
| | - Xu Xing
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yanhui Sun
- Al-ion Battery Research Center, Department of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, Shandong 266590, China. .,School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin 132012, China.
| | - Xu Zhang
- Al-ion Battery Research Center, Department of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Zongge Li
- Al-ion Battery Research Center, Department of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, Shandong 266590, China. .,State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Miaosen Yang
- School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin 132012, China.
| | - Guoxin Zhang
- Al-ion Battery Research Center, Department of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| |
Collapse
|
14
|
Wan L, Wang Y, Du C, Chen J, Xie M, Wu Y, Zhang Y. NiAlP@Cobalt substituted nickel carbonate hydroxide heterostructure engineered for enhanced supercapacitor performance. J Colloid Interface Sci 2021; 609:1-11. [PMID: 34890947 DOI: 10.1016/j.jcis.2021.11.191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022]
Abstract
Transitional metal phosphides with high electrical conductivity and superb physicochemical features have been recognized as ideal battery-type electrode materials for outstanding performance supercapacitors. However, their specific capacities and structural stability are needed to be enhanced for large-scale practical applications. To overcome these shortcomings, we fabricated heterostructured NiAlP@cobalt substituted nickel carbonate hydroxide (Co-NiCH) nanosheet arrays by sequential a hydrothermal reaction, a phosphorization treatment, and a second hydrothermal reaction. Profiting from its core-shell porous nanostructure and synergistic effect of NiAlP with high electrical conductivity and Co-NiCH with high redox reactivity, the resultant NiAlP@Co-NiCH electrode delivers a large specific capacity of 825.7C g-1 at 1 A g-1, excellent rate capability with 78.9% capacity retention and long lifespan, superior to those of pure NiAlP and Co-NiCH electrodes. Additionally, an aqueous asymmetric supercapacitor device is constructed by NiAlP@Co-NiCH and lotus pollen-derived hierarchical porous carbon, which demonstrates a large energy density of 82.3 Wh kg-1 at a power density of 739.8 W kg-1, and wonderful cycle stability with 88.2% capacity retention after 10,000 cycles. This work proposes a feasible strategy on construction of transitional metal phosphide-based heterojunctions for advanced asymmetric supercapacitor devices.
Collapse
Affiliation(s)
- Liu Wan
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China.
| | - Yameng Wang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China; College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, China
| | - Cheng Du
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Jian Chen
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Mingjiang Xie
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Yapan Wu
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, China
| | - Yan Zhang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China.
| |
Collapse
|
15
|
Anand S, Ahmad MW, Fatima A, Kumar A, Bharadwaj A, Yang DJ, Choudhury A. Flexible nickel disulfide nanoparticles-anchored carbon nanofiber hybrid mat as a flexible binder-free cathode for solid-state asymmetric supercapacitors. NANOTECHNOLOGY 2021; 32:495403. [PMID: 34433156 DOI: 10.1088/1361-6528/ac20fd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Nickel disulfide nanoparticles (NiS2NPs)-anchored carbon nanofibers (NiS2NPs@CNF) hybrid mats were fabricated via the sequential process of stabilization and carbonization of electrospun polyacrylonitrile-based fibers followed by hydrothermal growth of NiS2NPs on the porous surface of CNFs. The vertical growth of NiS2NPs on entire surfaces of porous CNFs appeared in the SEM images of hybrid mat. The hierarchical NiS2NPs@CNF core-shell hybrid nanofibers with 3D interconnected network architecture can endow continuous channels for easy and rapid ionic diffusion to access the electroactive NiS2NPs. The conductive and interconnected CNF core could facilitate electron transfer to the NiS2shell. Moreover, the porous CNF as a buffering matrix can resist volumetric deformation during the long-term charge-discharge process. The NiS2NPs@CNF electrode can yield high specific capacitance (916.3 F g-1at 0.5 A g-1) and reveal excellent cycling performances. The solid-state asymmetric supercapacitor (ASC) was fabricated with NiS2NPs@CNF mat as a binder-free positive electrode and activated carbon cloth as a negative electrode. As-assembled ASC not only produce high specific capacitance (364.8 F g-1at 0.5 A g-1) but also exhibit excellent cycling stability (∼92.8% after 5000 cycles). The ASC delivered a remarkably high energy density of 129.7 Wh kg-1at a power density of 610 W kg-1. These encouraging results could make this NiS2NPs@CNF hybrid mat a good choice of cathode material for the fabrication of flexible solid-state ASC for various flexible/wearable electronics.
Collapse
Affiliation(s)
- Surbhi Anand
- Department of Chemical Engineering, Birla Institute of Technology, Ranchi 835215, India
| | - Md Wasi Ahmad
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, PO Box 2509, Postal Code 211, Oman
| | - Atiya Fatima
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, PO Box 2509, Postal Code 211, Oman
| | - Anupam Kumar
- Department of Chemical Engineering, Birla Institute of Technology, Ranchi 835215, India
| | - Arvind Bharadwaj
- Centre for Converging Technologies, University of Rajasthan, J.L.N. Marg, Jaipur 302004, India
| | - Duck-Joo Yang
- Department of Chemistry and the Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States of America
| | - Arup Choudhury
- Department of Chemical Engineering, Birla Institute of Technology, Ranchi 835215, India
| |
Collapse
|
16
|
Hu Q, Zhang S, Zou X, Hao J, Bai Y, Yan L, Li W. Coordination agent-dominated phase control of nickel sulfide for high-performance hybrid supercapacitor. J Colloid Interface Sci 2021; 607:45-52. [PMID: 34492352 DOI: 10.1016/j.jcis.2021.08.185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022]
Abstract
The property of an active material is not only influenced by its morphology and size, but also by its crystal phase. The present phase regulation of nickel sulfide is mainly achieved by controlling the participation of sulfur source in reaction. Thus, new perspectives direct at phase control need to be explored and supplemented. Herein, we proposed a novel coordination agent-dominated phase modulation strategy assisted by a hydrothermal process. It is found that increasing the amount of coordination agent can drove the phase transformation from the initial composite of β-NiS/α-NiS/Ni3S4 to β-NiS/α-NiS, and then to pure β-NiS. The mechanism of phase regulation has been proposed, and the general application of this method has been demonstrated. By employing coordination agent, the size of resulted products is reduced, and the morphology is optimized. As a result, all of the pure β-NiS electrodes indicate significantly enhanced specific capacity than the pristine β-NiS/α-NiS/Ni3S4 composite. Notably, the sample synthesized with 3 mmol of urea (S11) shows uniform morphology and smallest size, and it gives a highest specific capacity of 223.8 mAh g-1 at 1 A g-1, almost 1.5 times of the original sample. The fabricated S11//rGO device delivers a high energy density of 56.6 Wh·kg-1 at a power density of 407.5 W·kg-1, and keeps an impressive capacity retention of 84% after 20,000 cycles. This work put forwards a new prospect for controlling the phase and composition of nickel sulfide based on coordination chemistry.
Collapse
Affiliation(s)
- Qin Hu
- Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Shengtao Zhang
- Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
| | - Xuefeng Zou
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| | - Jiangyu Hao
- Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Youcun Bai
- Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Lijin Yan
- Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Wenpo Li
- Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
17
|
Ye Y, Guo X, Ma Y, Zhao Q, Sui Y, Song J, Ma W, Zhang P, Qin C. Synthesis of polypyrrole nanotubes@nickel-molybdenum sulfide core–shell composites for aqueous high-performance asymmetric supercapacitors. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Hu Q, Zhang S, Li W, Hao J, Zhang L, Yan L, Zou X. Template-free synthesis of β-NiS ball-in-ball microspheres for a high-performance asymmetrical supercapacitor. Dalton Trans 2021; 50:11512-11520. [PMID: 34346450 DOI: 10.1039/d1dt01687c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While significant advances have been made in the synthesis of core-/multi-shell materials, the synthetic process usually involves a soft/hard template and complicated procedures. In particular, it is extremely difficult to fabricate single-component core-shell structures for nickel sulfides (NSs) with a controlled phase. In this work, we demonstrate a novel facile method to synthesize a single-component β-NiS ball-in-ball microsphere. The ball-in-ball structure is easily obtained by uniquely employing 2-mercaptopropionic acid (2-MPA) as the sulfur source and ethanol as the solvent based on the Ostwald ripening process. In particular, our work demonstrates that the chemical structure of sulfur sources and solvents plays a key role in the formation of the pure β-NiS ball-in-ball structure. When used as an electrode active material, the β-NiS ball-in-ball microspheres exhibit two times stronger specific capacity and three times higher rate performance than NSs produced by a hydrothermal method. The fabricated NS-2//rGO asymmetrical supercapacitor (ASC) displays an energy density of 46.4 W h kg-1 at a power density of 799.0 W kg-1 and good cycling performance. Thus, this study provides a new method for controlling the phase and morphology of NSs.
Collapse
Affiliation(s)
- Qin Hu
- Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Facile in-situ synthesis of heazlewoodite on nitrogen-doped reduced graphene oxide for enhanced sodium storage. J Colloid Interface Sci 2021; 594:35-46. [PMID: 33756366 DOI: 10.1016/j.jcis.2021.03.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 01/14/2023]
Abstract
Nickel sulfide based anode materials, featuring rich types, high specific capacities and favorable conversion kinetics, have been proved to be promisingly applied in high-performance sodium-ion batteries (SIBs). Unfortunately, the poor electronic/ionic conductivity, together with the structure change induced degraded capacity upon cycling, restricts their further development. In this work, heazlewoodite nanoparticles decorated on nitrogen doped reduced graphene oxide (Ni3S2/NrGO) were fabricated via a facile combined approach with freeze-drying and subsequent in-situ sulfidation. In the obtained hybrid structure, the synergistic effect between Ni3S2 and NrGO endows the composite with highly conductive pathways, thus accelerating the charge transfer. Benefitting from the buffering matrix offered by NrGO as well as the tight combination between Ni3S2 and NrGO, this novel Ni3S2/NrGO demonstrates satisfying sodium storage performance, with a stable reversible capacity of 299.2 mAh g-1 up to 100 cycles (0.1 A g-1) and a high initial Coulombic efficiency of 76.8%. Importantly, the rational structure design and synthesis method, as well as the insights on the improved electrochemical performance reported in this work, should be helpful for the development of new-type host materials with high performance for SIBs.
Collapse
|
20
|
Tanwar S, Arya A, Gaur A, Sharma AL. Transition metal dichalcogenide (TMDs) electrodes for supercapacitors: a comprehensive review. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:303002. [PMID: 33892487 DOI: 10.1088/1361-648x/abfb3c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
As globally, the main focus of the researchers is to develop novel electrode materials that exhibit high energy and power density for efficient performance energy storage devices. This review covers the up-to-date progress achieved in transition metal dichalcogenides (TMDs) (e.g. MoS2, WS2, MoSe2,and WSe2) as electrode material for supercapacitors (SCs). The TMDs have remarkable properties like large surface area, high electrical conductivity with variable oxidation states. These properties enable the TMDs as the most promising candidates to store electrical energy via hybrid charge storage mechanisms. Consequently, this review article provides a detailed study of TMDs structure, properties, and evolution. The characteristics technique and electrochemical performances of all the efficient TMDs are highlighted meticulously. In brief, the present review article shines a light on the structural and electrochemical properties of TMD electrodes. Furthermore, the latest fabricated TMDs based symmetric/asymmetric SCs have also been reported.
Collapse
Affiliation(s)
- Shweta Tanwar
- Department of Physics, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Anil Arya
- Department of Physics, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Anurag Gaur
- Department of Physics, National Institute of Technology, Kurukshetra-136119, Haryana, India
| | - A L Sharma
- Department of Physics, Central University of Punjab, Bathinda-151401, Punjab, India
| |
Collapse
|
21
|
Wan L, Yuan Y, Liu J, Chen J, Zhang Y, Du C, Xie M. A free-standing Ni–Mn–S@NiCo2S4 core–shell heterostructure on carbon cloth for high-energy flexible supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137579] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Zhao M, Guo C, Gao L, Kuang X, Yang H, Ma X, Liu C, Liu X, Sun X, Wei Q. Vanadium-Doped NiS2 Porous Nanosphere with High Selectivity and Stability for Electroreduction of Nitrogen to Ammonia. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00328c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In comparison with the traditional Harber-Bosch process, the electrocatalytic nitrogen reduction reaction (NRR) with high purity and sustainability became a popular process to satisfy the demand of ammonia. However, the...
Collapse
|
23
|
Controlled synthesis of a high-performance α-NiS/Ni3S4 hybrid by a binary synergy of sulfur sources for supercapacitor. J Colloid Interface Sci 2021; 581:56-65. [DOI: 10.1016/j.jcis.2020.07.129] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/15/2020] [Accepted: 07/26/2020] [Indexed: 01/13/2023]
|
24
|
Iqbal MZ, Faisal MM, Sulman M, Ali SR, Alzaid M. Facile synthesis of strontium oxide/polyaniline/graphene composite for the high-performance supercapattery devices. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|