1
|
Wu X, Tu WH, Veksha A, Chen W, Lisak G. Polyolefin-derived substrate-grown carbon nanotubes as binder-free electrode for hydrogen evolution in alkaline media. CHEMOSPHERE 2024; 349:140769. [PMID: 38000550 DOI: 10.1016/j.chemosphere.2023.140769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Switching from a linear mode of waste management to a circular loop by transforming plastic waste into carbon nanotubes (CNTs) is a promising approach to current plastic waste treatment. One of the many applications of CNTs is its use for electrocatalytic water splitting for hydrogen evolution. Existing methods of CNTs-based hydrogen evolution reaction (HER) electrode fabrication involve additives like polymeric binders and additional steps to improve CNT dispersion, which are detrimental to the CNT structure and properties. The in-situ fabrication approach can potentially be a one-pot solution to HER electrode synthesis. In this study, polyolefins pyrolysis gas and a Co:Ni:Mg catalyst were used to fabricate binder-free CNTs-based electrodes on different substrates for HER. The study assessed CNT quality on conductive carbon paper, semiconductive silicon, and dielectric glass substrates, evaluating their HER performance in 1 M KOH. A mixture of hollow-core, bamboo-like, and cup-stacked arrangement nanotubes were synthesized on the substrates, with CNTs on glass and carbon paper substrates possessing better graphitization than CNTs grown on silicon. This is in agreement with HER performance, whereby the as-prepared electrodes required overpotentials of 267 mV, 241 mV, and 216 mV for silicon, glass, and carbon paper, respectively, to achieve 10 mA/cm2. Despite being poorly conductive, the glass substrate electrode achieved a lower overpotential than the silicon electrode. Additionally, the as-prepared silicon electrode faced a delamination issue likely attributed to the lower surface energy of the silicon substrate surface, demonstrating the weaker adhesion between the CNTs and silicon surface. The proposed approach thus showed that the in-situ fabricated electrodes performed better than separately synthesized CNTs prepared into electrodes by 27.4% and 14.2% for carbon paper and glass substrates, respectively. The improved performance of the as-prepared, binder-free electrodes can be linked to the lower charge-transfer resistance and reduced contact resistance between the CNTs and substrate.
Collapse
Affiliation(s)
- XinYi Wu
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Wei Han Tu
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Interdisciplinary Graduate Program, Nanyang Technological University, 1 Cleantech Loop, Cleantech One, Singapore, 637141, Singapore
| | - Andrei Veksha
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore
| | - Wenqian Chen
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
2
|
Wang Y, Wang T, Yang M, Rui Y, Xue Z, Zhu H, Wang C, Li J, Chen B. Co 2P nanowire arrays anchored on a 3D porous reduced graphene oxide matrix embedded in nickel foam for a high-efficiency hydrogen evolution reaction. Dalton Trans 2023; 52:11526-11534. [PMID: 37540012 DOI: 10.1039/d3dt01367g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Regulating the structural and interfacial properties of transition metal phosphides (TMPs) by coupling carbon-based materials with large surface areas to enhance hydrogen evolution reaction (HER) performance presents significant progress for water splitting technology. Herein, we constructed a composite substrate of a three-dimensional porous graphene oxide matrix (3D-GO) embedded in nickel foam (NF) to grow a Co2P electrocatalyst. Well-defined gladiolus-like Co2P nanowire arrays tightly anchored on the substrate show enhanced electrochemical characteristics for the hydrogen evolution reaction (HER) based on the promoting roles of 3D porous reduced GO (3D-rGO) derived from 3D-GO, which promotes the dispersion of active components, improves the rate of electron transfer, and facilitates the transport of water molecules. As a result, the obtained Co2P@3D-rGO/NF electrode exhibits superior HER activity in 1.0 M KOH media, achieving overpotentials of 36.5 and 264.7 mV at current densities of 10 and 100 mA cm-2, respectively. The electrode also has a low Tafel slope of 55.5 mV dec-1, a large electrochemical surface area, and small charge-transfer resistance, further revealing its mechanism of high intrinsic activity. Moreover, the electrode exhibits excellent HER stability and durability without surface morphology and chemical state changes.
Collapse
Affiliation(s)
- Yuanqiang Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Ting Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Mengru Yang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Yichuan Rui
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Zhili Xue
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Haozhen Zhu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Chengjie Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Jing Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| | - Binling Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China.
| |
Collapse
|
3
|
Mao D, Zhang J, Wu Y, Qin H, Zheng Y, Li LC. The electronic structures of non-metal (N, S) doped cobalt phosphide catalysts and the catalytic mechanism for the hydrogen evolution reaction of ammonia borane: a theoretical study. NEW J CHEM 2023. [DOI: 10.1039/d2nj04535d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The electronic structures of non-metal (N, S) doped CoP catalysts and the mechanism of the hydrogen evolution reaction of ammonia borane catalyzed by three catalysts were studied using density functional theory.
Collapse
Affiliation(s)
- Dan Mao
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Jingbin Zhang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Yang Wu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Haichuan Qin
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Yan Zheng
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Lai-Cai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
4
|
Ye F, Yang Y, Liu P, Feng Y, Cao Y, Cao D, Ta L, Ma X, Xu C. In-situ porous flake heterostructured NiCoP/Ni foam as electrocatalyst for hydrogen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Deng R, Guo M, Wang C, Zhang Q. Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting: From catalytic mechanism and synthesis method to optimization design. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Tang Z, Wei S, Wang Y, Dai L. Three-dimensional reduced graphene oxide decorated with cobalt metaphosphate as high cost-efficiency electrocatalysts for the hydrogen evolution reaction. RSC Adv 2022; 12:10522-10533. [PMID: 35424987 PMCID: PMC8982437 DOI: 10.1039/d2ra01271e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/28/2022] [Indexed: 11/21/2022] Open
Abstract
The development of cost-effective non-noble metal electrocatalysts is critical for the research of renewable energy. Transition metal cobalt metaphosphate-based materials have the potential to replace the noble metal Pt. Hence, in this work, we synthesize three-dimensional graphene-supported cobalt metaphosphate (Co(PO3)2-3D RGO) for the first time through the one-step hydrothermal synthesis method at low temperature with the aid of PH3 phosphating. In a 0.5 mol L−1 H2SO4 solution, the obtained electrocatalyst exhibits excellent electrochemical activity for the hydrogen evolution reaction (HER) with a small overpotential of 176 mV at a current density of 10 mA cm−2 and a Tafel slope of 63 mV dec−1. Additionally, in a 1 mol L−1 KOH solution, the electrocatalyst also shows outstanding HER activity with a small overpotential of 158 mV at a current density of 10 mA cm−2 and a Tafel slope of 88 mV dec−1. Co(PO3)2-3D RGO can maintain its catalytic activity for at least ten hours whether in acid or alkali. This work not only demonstrates an excellent electrocatalyst for the hydrogen evolution reaction, but also provides an extremely convenient preparation technology, which provides a new strategy for the development and utilization of high-performance electrocatalysts. The development of cost-effective non-noble metal electrocatalysts is critical for the research of renewable energy.![]()
Collapse
Affiliation(s)
- Zijie Tang
- College of Chemistry and Molecular Engineering, East China Normal University No. 500 Dongchuan Road Shanghai 200241 P. R. China .,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 P. R. China
| | - Shenqi Wei
- College of Chemistry and Molecular Engineering, East China Normal University No. 500 Dongchuan Road Shanghai 200241 P. R. China .,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 P. R. China
| | - Yuanyuan Wang
- College of Chemistry and Molecular Engineering, East China Normal University No. 500 Dongchuan Road Shanghai 200241 P. R. China .,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 P. R. China
| | - Liyi Dai
- College of Chemistry and Molecular Engineering, East China Normal University No. 500 Dongchuan Road Shanghai 200241 P. R. China .,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 P. R. China
| |
Collapse
|
7
|
Zong H, Qi R, Yu K, Zhu Z. Ultrathin Ti2NTx MXene-wrapped MOF-derived CoP frameworks towards hydrogen evolution and water oxidation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Porous N, P co-doped carbon-coated ultrafine Co2P nanoparticles derived from DNA: An electrocatalyst for highly efficient hydrogen evolution reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Karaman C, Karaman O, Atar N, Yola ML. Tailoring of cobalt phosphide anchored nitrogen and sulfur co-doped three dimensional graphene hybrid: Boosted electrocatalytic performance towards hydrogen evolution reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138262] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Enhancing hydrogen evolution reaction activity on cobalt oxide in alkaline electrolyte by doping inactive rare-earth metal. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|