1
|
Sun X, Guo Y, Zhang R, Fang C, Xu C, Zhang Z, Zhu Y, Jiang L. A Self-Replenishing Lubricant Slippery Coating with Low Interfacial Toughness for Enhancing Large-Scale Deicing Efficiency. ACS APPLIED MATERIALS & INTERFACES 2025; 17:30081-30093. [PMID: 40327451 DOI: 10.1021/acsami.5c03792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Ice accumulation on industrial and operational surfaces presents formidable challenges, necessitating effective deicing solutions for diverse applications. In this study, we develop a self-replenishing slippery lubricant (SRLS) coating designed to enhance large-scale deicing efficiency and overcome the limitations of existing low-ice-adhesion surfaces. The SRLS coating is based on a polyorganosilazane (PSZ) matrix infused with silicone oil-loaded hollow mesoporous SiO2 microspheres (SO@HMSs). These SiO2 microspheres serve as reservoirs of silicone oil, mitigating premature exudation and enhancing the coating's deicing durability in complex environments. Silicone oil functions as a plasticizer within the PSZ matrix, reducing the interfacial toughness and ice adhesion strength. By optimizing the SO@HMSs content, the SRLS-20 coating achieves a remarkably low interfacial toughness of 0.028 J m-2 and an ice adhesion strength of 8.51 ± 1.89 kPa, surpassing current state-of-the-art coatings. This reduction in interfacial toughness transitions the ice removal mechanism from strength-controlled to toughness-controlled fracture. The SRLS-20 coating maintains a constant deicing force of 15.43 ± 1.51 N cm-1 for ice layers exceeding a critical length of 12.20 cm, proving its effectiveness for large-scale deicing applications. Finite element analysis further reveals that the inclusion of SO@HMSs lowers the shear stress required for ice interface crack initiation, enhancing deicing efficiency across an extensive surface. This approach enables the development of durable, large-scale ice-phobic surfaces with low ice adhesion strength and reduced interfacial toughness, offering a robust solution for mitigating ice accumulation in industrial applications.
Collapse
Affiliation(s)
- Xiang Sun
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Yumeng Guo
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Rong Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Changjian Fang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Caihong Xu
- CAS Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
| | - Zongbo Zhang
- CAS Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
| | - Ying Zhu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Ji F, Jiang F, Luo H, He WW, Han X, Shen W, Liu M, Zhou T, Xu J, Wang Z, Lan YQ. Hybrid Membrane of Sulfonated Poly(aryl ether ketone sulfone) Modified by Molybdenum Clusters with Enhanced Proton Conductivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312209. [PMID: 38530091 DOI: 10.1002/smll.202312209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/06/2024] [Indexed: 03/27/2024]
Abstract
Developing novel proton exchange membranes (PEMs) with low cost and superior performance to replace Nafion is of great significance. Polyoxometalate-doped sulfonated poly(aryl ether ketone sulfone) (SPAEKS) allows for the amalgamation of the advantages in each constituent, thereby achieving an optimized performance for the hybrid PEMs. Herein, the hybrid membranes by introducing 2MeIm-{Mo132} into SPAEKS are obtained. Excellent hydrophilic properties of 2MeIm-{Mo132} can help more water molecules be retained in the hybrid membrane, providing abundant carriers for proton transport and proton hopping sites to build successive hydrophilic channels, thus lowering the energy barrier, accelerating the proton migration, and significantly fostering the proton conductivity of hybrid membranes. Especially, SP-2MIMo132-5 exhibits an enhanced proton conductivity of 75 mS cm-1 at 80 °C, which is 82.9% higher than pristine SPAEKS membrane. Additionally, this membrane is suitable for application in proton exchange membrane fuel cells, and a maximum power density of 266.2 mW cm-2 can be achieved at 80 °C, which far exceeds that of pristine SPAEKS membrane (54.6 mW cm-2). This work demonstrates that polyoxometalate-based clusters can serve as excellent proton conduction sites, opening up the choice of proton conduction carriers in hybrid membrane design and providing a novel idea to manufacture high-performance PEMs.
Collapse
Affiliation(s)
- Fang Ji
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Fengyu Jiang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Hongwei Luo
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Wen-Wen He
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Xu Han
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Wangwang Shen
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Menglong Liu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Tao Zhou
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Jingmei Xu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Zhe Wang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
3
|
Liu Z, Pang X, Shi B, Xing N, Liu Y, Lyu B, Zhang L, Kong Y, Wang S, Gao Z, Xue R, Jing T, Liu C, Bai Q, Wu H, Jiang Z. Covalent organic frameworks with flexible side chains in hybrid PEMs enable highly efficient proton conductivity. MATERIALS HORIZONS 2024; 11:141-150. [PMID: 37916392 DOI: 10.1039/d3mh01604h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrochemical hydrogen compression (EHC) is an emerging energy conversion technology. Proton exchange membranes (PEMs) with high proton conductivity and high mechanical strength are highly required to meet the practical requirements of EHC. Herein, ionic covalent organic frameworks (iCOFs) with tunable side chains were synthesized and introduced into the sulfonated poly (ether ether ketone) (SPEEK) matrix to fabricate hybrid PEMs. In our membranes, the rigid iCOFs afford ordered proton conduction channels, whereas the flexible side chains on iCOFs afford abundant proton conduction sites, adaptive hydrogen bonding networks, and high local density short hydrogen bonds for highly efficient proton transport. Moreover, the hydrogen bond interactions between the side chains on iCOFs and the SPEEK matrix enhance the mechanical stability of membranes. As a result, the hybrid PEM acquires an enhanced proton conductivity of 540.4 mS cm-1 (80 °C, 100%RH), a high mechanical strength of 120.41 MPa, and a superior performance (2.3 MPa at 30 °C, 100%RH) in EHC applications.
Collapse
Affiliation(s)
- Ziwen Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Lab Sustainable Chem Transformations, Tianjin 300192, P. R. China
| | - Xiao Pang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Lab Sustainable Chem Transformations, Tianjin 300192, P. R. China
| | - Benbing Shi
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Lab Sustainable Chem Transformations, Tianjin 300192, P. R. China
| | - Na Xing
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Lab Sustainable Chem Transformations, Tianjin 300192, P. R. China
| | - Yawei Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bohui Lyu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Lab Sustainable Chem Transformations, Tianjin 300192, P. R. China
| | - Leilang Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Lab Sustainable Chem Transformations, Tianjin 300192, P. R. China
| | - Yan Kong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Lab Sustainable Chem Transformations, Tianjin 300192, P. R. China
| | - Sijia Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Lab Sustainable Chem Transformations, Tianjin 300192, P. R. China
| | - Zhong Gao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Lab Sustainable Chem Transformations, Tianjin 300192, P. R. China
| | - Rou Xue
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Lab Sustainable Chem Transformations, Tianjin 300192, P. R. China
| | - Tianyu Jing
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Lab Sustainable Chem Transformations, Tianjin 300192, P. R. China
| | - Changkun Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Lab Sustainable Chem Transformations, Tianjin 300192, P. R. China
| | - Qinhuidan Bai
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Lab Sustainable Chem Transformations, Tianjin 300192, P. R. China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Lab Sustainable Chem Transformations, Tianjin 300192, P. R. China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Lab Sustainable Chem Transformations, Tianjin 300192, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
4
|
Guan L, Guo Z, Zhou Q, Zhang J, Cheng C, Wang S, Zhu X, Dai S, Jin S. A highly proton conductive perfluorinated covalent triazine framework via low-temperature synthesis. Nat Commun 2023; 14:8114. [PMID: 38065936 PMCID: PMC10709654 DOI: 10.1038/s41467-023-43829-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/22/2023] [Indexed: 05/07/2025] Open
Abstract
Proton-conducting materials are essential to the emerging hydrogen economy. Covalent triazine frameworks (CTFs) are promising proton-conducting materials at high temperatures but need more effective sites to strengthen interaction for proton carriers. However, their construction and design in a concise condition are still challenges. Herein, we show a low temperature approach to synthesize CTFs via a direct cyclotrimerization of aromatic aldehyde using ammonium iodide as facile nitrogen source. Among the CTFs, the perfluorinated CTF (CTF-TF) was successfully synthesized with much lower temperature ( ≤ 160 °C) and open-air atmosphere. Due to the additional hydrogen-bonding interaction between fluorine atoms and proton carriers (H3PO4), the CTF-TF achieves a proton conductivity of 1.82 × 10-1 S cm-1 at 150 °C after H3PO4 loading. Moreover, the CTF-TF can be readily integrated into mixed matrix membranes, displaying high proton conduction abilities and good mechanical strength. This work provides an alternative strategy for rational design of proton conducting media.
Collapse
Affiliation(s)
- Lijiang Guan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Zhaoqi Guo
- School of Chemical Engineering, Northwest University, No.229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Qi Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Jin Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Cheng Cheng
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Shengyao Wang
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiang Zhu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Shangbin Jin
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, China.
| |
Collapse
|
5
|
Wang L, Wang Y, Li Z, Li T, Zhang R, Li J, Liu B, Lv Z, Cai W, Sun S, Hu W, Lu Y, Zhu G. PAF-6 Doped with Phosphoric Acid through Alkaline Nitrogen Atoms Boosting High-Temperature Proton-Exchange Membranes for High Performance of Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303535. [PMID: 37358077 DOI: 10.1002/adma.202303535] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/03/2023] [Indexed: 06/27/2023]
Abstract
High-temperature proton-exchange-membrane fuel cells (HT-PEMFCs) can offer improved energy efficiency and tolerance to fuel/air impurities. The high expense of the high-temperature proton-exchange membranes (HT-PEMs) and their low durability at high temperature still impede their further practical applications. In this work, a phosphoric acid (PA)-doped porous aromatic framework (PAF-6-PA) is incorporated into poly[2,2'-(p-oxydiphenylene)-5,5'-benzimidazole] (OPBI) to fabricate novel PAF-6-PA/OPBI composite HT-PEMs through solution-casting. The alkaline nitrogen structure in PAF-6 can be protonated with PA to provide proton hopping sites, and its porous structure can enhance the PA retention in the membranes, thus creating fast pathways for proton transfer. The hydrogen bond interaction between the rigid PAF-6 and OPBI can also enhance the mechanical properties and chemical stability of the composite membranes. Consequently, PAF-6-PA/OPBI exhibits an optimal proton conductivity of 0.089 S cm-1 at 200 °C, and peak power density of 437.7 mW cm-2 (Pt: 0.3 mg cm-2 ), which is significantly higher than that of the OPBI. The PAF-6-PA/OPBI provides a novel strategy for the practical application of PBI-based HT-PEMs.
Collapse
Affiliation(s)
- Liying Wang
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Yuliang Wang
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Zhangnan Li
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Tianyang Li
- Faculty of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P.R. China
| | - Ruyu Zhang
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Jing Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Baijun Liu
- Faculty of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P.R. China
| | - Zhongyuan Lv
- Faculty of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P.R. China
| | - Weiwei Cai
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Shuhui Sun
- National Institute of Scientific Research (INRS) Center Energy Material and Telecommunications, Varennes, Quebec, J3×1P7, Canada
| | - Wei Hu
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| | - Yunfeng Lu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, P. R. China
| |
Collapse
|
6
|
Yu Y, Zeng Z, Gao X, Xiong C, Zhu H, Cen H, Zheng X, Liu Q, Hu T, Wu C. A Maximization of the Proton Conductivity of Sulfonated Poly(Ether Ether Ketone) with Grafted Segments Containing Multiple, Flexible Propanesulfonic Acid Groups. Macromol Rapid Commun 2023; 44:e2200926. [PMID: 36527198 DOI: 10.1002/marc.202200926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Indexed: 12/23/2022]
Abstract
To enhance the proton conductivity of sulfonated poly(ether ether ketone) (SPEEK), proton-conducting groups are required to be covalently connected to SPEEK and form proton-conducting channels. Herein, SPEEK fully grafted with segments containing multiple, flexible propanesulfonic acid groups (MS-SPEEK-102) is successfully prepared. Compared with SPEEK, MS-SPEEK-102 exhibits a higher proton conductivity of 8.3 × 10-2 S cm-1 at 80 °C with 98% relative humidity, and consequently a greater power density of 0.530 W cm-2 at 60 °C. These can be ascribed to the increased number of sulfonic acid groups, and ample, uninterrupted proton-conducting channels constructed by the movement of the maximum content, flexible side-chain segments. This approach offers an idea for obtaining a proton exchange membrane with good proton conductivity based on SPEEK.
Collapse
Affiliation(s)
- Yang Yu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
| | - Zheng Zeng
- Jingmen City Huafu Polymeric Materials Co., Ltd., Jingmen, Hubei, 448000, P. R. China
| | - Xuesong Gao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
| | - Chunyong Xiong
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
| | - Huamei Zhu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
| | - Hongyu Cen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
- Hubei Longzhong Laboratory, Xiangyang, Hubei, 441000, P. R. China
| | - Xuan Zheng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
- Hubei Longzhong Laboratory, Xiangyang, Hubei, 441000, P. R. China
| | - Qingting Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
- Hubei Longzhong Laboratory, Xiangyang, Hubei, 441000, P. R. China
| | - Tao Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
- Hubei Longzhong Laboratory, Xiangyang, Hubei, 441000, P. R. China
| | - Chonggang Wu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, and School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, P. R. China
- Hubei Longzhong Laboratory, Xiangyang, Hubei, 441000, P. R. China
| |
Collapse
|
7
|
Saputra E, Prawiranegara BA, Nugraha MW, Sambudi NS, Sugesti H, Awaluddin A, Utama PS, Manawan M. Fabrication of hybrid covalent triazine framework-zinc ferrite spinel to uplift visible light-driven photocatalytic organic pollutant degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39961-39977. [PMID: 36602743 DOI: 10.1007/s11356-022-25021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The tunability of porous covalent triazine frameworks (CTFs) can mitigate poor photostability and rapid hole-electron recombination. Herein, an excellent improvement of visible light-driven photocatalytic pollutant degradation was achieved using a hybrid semiconductor of covalent triazine framework-zinc ferrite spinel catalysts (CTF-ZnFe2O4). The as-prepared CTF-ZnFe2O4 composites were fabricated using a facile one-pot ionothermal method. The hybrid photocatalysts were identified using X-ray diffraction (XRD), scanning electron microscopy/energy-dispersive X-ray (SEM-EDX), X-ray photoelectron spectrometer (XPS), Brunauer-Emmett-Teller (BET), Fourier transform infrared (FTIR), and UV-visible diffuse reflection spectroscopy (UV-vis DRS) characterizations. The analysis reveals that hybridization successfully ensued and altered the crystallinity structure, morphology, surface area, and bandgap energy of hybrid material. It was found that CTF-ZnFe2O4 90:10 is very effective for the degradation of MB in a UV-vis light photocatalytic process with the efficiency of 95.4% and kobs of 0.421 min-1 for degradation of 50 mg/L MB with 0.5 g/L dosages for 120 min. Additionally, the scavenger study, effect of additional oxidants, and stability were performed for the practical application of a hybrid photocatalyst. CTF-ZnFe2O4 90:10 shows outstanding pollutant degradation in sunlight irradiation and high stability with only a 5.2% reduction after a five-times sequential recycling process. Moreover, the photocatalytic mechanism of as-prepared CTF-ZnFe2O4 was mainly influenced by [Formula: see text] radical compared to [Formula: see text] and [Formula: see text] radicals. Overall, The as-prepared CTF-ZnFe2O4 shows significant potential to be utilized for photocatalytic wastewater treatment.
Collapse
Affiliation(s)
- Edy Saputra
- Department of Chemical Engineering, Universitas Riau, Pekanbaru, 28293, Indonesia.
| | - Barata Aditya Prawiranegara
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, 28293, Indonesia
| | - Muhammad Wahyu Nugraha
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Nonni Soraya Sambudi
- Department of Chemical Engineering, Universitas Pertamina, Simprug, Jakarta, 12220, Indonesia
| | - Heni Sugesti
- Department of Chemical Engineering, Universitas Riau, Pekanbaru, 28293, Indonesia
| | - Amir Awaluddin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, 28293, Indonesia
| | - Panca Setia Utama
- Department of Chemical Engineering, Universitas Riau, Pekanbaru, 28293, Indonesia
| | - Maykel Manawan
- Teknologi Daya Gerak, Universitas Pertahan Indonesia, Bogor, 16810, Indonesia
| |
Collapse
|
8
|
Wang S, Zhu T, Shi B, Fan C, Liu Y, Yin Z, Gao Z, Zhang Z, Wu H, Jiang Z. Porous organic polymer with high-density phosphoric acid groups as filler for hybrid proton exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Jiang G, Zou W, Ou Z, Zhang L, Zhang W, Wang X, Song H, Cui Z, Liang Z, Du L. Tuning the Interlayer Interactions of 2D Covalent Organic Frameworks Enables an Ultrastable Platform for Anhydrous Proton Transport. Angew Chem Int Ed Engl 2022; 61:e202208086. [DOI: 10.1002/anie.202208086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Guoxing Jiang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Wenwu Zou
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Zhaoyuan Ou
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Longhai Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Weifeng Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Xiujun Wang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Huiyu Song
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Zhiming Cui
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Zhenxing Liang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Li Du
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| |
Collapse
|
10
|
Jiang G, Zou W, Ou Z, Zhang L, Zhang W, Wang X, Song H, Cui Z, Liang Z, Du L. Tuning the Interlayer Interactions of 2D Covalent Organic Frameworks Enables an Ultrastable Platform for Anhydrous Proton Transport. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Guoxing Jiang
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Wenwu Zou
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Zhaoyuan Ou
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Longhai Zhang
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Weifeng Zhang
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Xiujun Wang
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Huiyu Song
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Zhiming Cui
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Zhenxing Liang
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Li Du
- South China University of Technology 381 Wushan Road Tianhe District Guangzhou CHINA
| |
Collapse
|
11
|
Zhong F, Zeng Z, Liu Y, Hou R, Nie X, Jia Y, Xi J, Liu H, Niu W, Zhang F. Modification of sulfonated poly (etherether ketone) composite polymer electrolyte membranes with 2D molybdenum disulfide nanosheet-coated carbon nanotubes for direct methanol fuel cell application. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Huang H, Ma Y, Jiang Z, Jiang ZJ. Spindle-like MOFs-derived porous carbon filled sulfonated poly (ether ether ketone): A high performance proton exchange membrane for direct methanol fuel cells. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119585] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Huang W, Li B, Wu Y, Zhang Y, Zhang W, Chen S, Fu Y, Yan T, Ma H. In Situ-Doped Superacid in the Covalent Triazine Framework Membrane for Anhydrous Proton Conduction in a Wide Temperature Range from Subzero to Elevated Temperature. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13604-13612. [PMID: 33719388 DOI: 10.1021/acsami.1c01134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Synthesis of solid-state proton-conducting membranes with low activation energy and high proton conductivity under anhydrous conditions is a great challenge. Here, we show a simple and convenient way to prepare covalent triazine framework membranes (CTF-Mx) with acid in situ doping for anhydrous proton conduction in a wide temperature range from subzero to elevated temperature (160 °C). The low proton dissociation energy and continuous hydrogen bond network in CTF-Mx make the membrane achieve high proton conductivity from 1.21×10-3 S cm-1 (-40 °C) to 2.08×10-2 S cm-1 (160 °C) under anhydrous conditions. Molecular dynamics and proton relaxation time analyses reveal proton hopping at low activation energies with greatly enhanced mobility in the CTF membranes.
Collapse
Affiliation(s)
- Wenbo Huang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yue Wu
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ying Zhang
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenxiang Zhang
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuhui Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu Fu
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tong Yan
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an 710049, China
| | - Heping Ma
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
14
|
Du J, Zhang F, Liang X, Qu F. Influence of chemical composition on the proton conductivity of microporous organic polymers entrapped in nitrilotrimethylphosphonic acid. NEW J CHEM 2021. [DOI: 10.1039/d1nj02385c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The construction of acid–base interactions is critical for developing proton-conducting COF materials with high loading and stable electrolytes, which is influenced by the chemical composition of conductors.
Collapse
Affiliation(s)
- Jiarui Du
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Xiaoqiang Liang
- College of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an 710048, P. R. China
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| |
Collapse
|
15
|
Babaryk AA, Adawy A, García I, Trobajo C, Amghouz Z, P Colodrero RM, Cabeza A, Olivera-Pastor P, Bazaga-García M, Dos Santos-Gómez L. Structural and proton conductivity studies of fibrous π-Ti 2O(PO 4) 2·2H 2O: application in chitosan-based composite membranes. Dalton Trans 2021; 50:7667-7677. [PMID: 33977991 DOI: 10.1039/d1dt00735a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although the fibrous polymorphic modification of titanium phosphate, π-Ti2O(PO4)2·2H2O (π-TiP) has been known for decades, its crystal structure has remained unsolved. Herewith, we report the crystal structure of π-TiP at room temperature, as determined from synchrotron radiation powder X-ray diffraction, and corroborated by 31P solid state NMR and accurate density functional theory calculations. In contrast to the previously reported ρ-TiP polymorph, the as-synthesized hydrated phase crystallizes in the monoclinic system (P21/c, a = 5.1121(2) Å, b = 14.4921(9) Å, c = 12.0450(11), β = 115.31(1)°, Z = 4), and is composed of corner-sharing titanium octahedra and phosphate units arranged in a pattern that is unique to the ρ-TiP polymorph. The unit cell was confirmed by electron diffraction, while the formation of planar packing imperfections and stacking faults along the [101] plane was revealed by HRTEM analysis. An in situ dehydration study of π-TiP, monitored by high-temperature powder X-ray diffraction, led to a new anhydrous monoclinic (P21/c, a = 5.1187(13) Å, b = 11.0600(21) Å, c = 14.4556(26), β = 107.65(2)°, Z = 4) phase that crystallizes at 500 °C. The latter resembles the packing fashion of the parental π-TiP, albeit titanium atoms are present in both distorted tetrahedral and octahedral coordination environments. Anhydrous π-TiP was found to partially rehydrate at room temperature, reversibly adopting the structure of the initial phase. The studies carried out under different conditions of leaching and impregnation with H3PO4 showed that π-TiP exhibits an extrinsic proton conductivity (1.3 × 10-3 S cm-1 at 90 °C and 95% RH) due to the presence of the protonated phosphate species bound on the particles surface, as revealed by 31P MAS-NMR spectroscopy data. The composite membranes of Chitosan (CS) matrices filled with H3PO4-impregnated π-TiP solid show an increment of proton conductivity up to 4.5 × 10-3 S cm-1, at 80 °C and 95% RH, which is 1.8-fold higher than those of the bare CS membranes.
Collapse
Affiliation(s)
- Artem A Babaryk
- Department of Physical and Analytical Chemistry, University of Oviedo - CINN (CSIC), 33006, Oviedo, Spain.
| | - Alaa Adawy
- Laboratory of High-Resolution Transmission Electron Microscopy, Institute for Scientific and Technological Resources, University of Oviedo, 33006, Oviedo, Spain
| | - Inés García
- Nanomaterials and Nanotechnology Research Centre - CINN (CSIC), 33940, El Entrego, Asturias, Spain
| | - Camino Trobajo
- Department of Organic and Inorganic Chemistry, University of Oviedo - CINN (CSIC), 33006, Oviedo, Spain
| | - Zakariae Amghouz
- Department of Materials Science and Metallurgical Engineering, University of Oviedo, 33203, Gijón, Spain
| | - Rosario M P Colodrero
- Universidad de Málaga, Dpto. de Química Inorgánica, Cristalografía y Mineralogía, 29071-Málaga, Spain.
| | - Aurelio Cabeza
- Universidad de Málaga, Dpto. de Química Inorgánica, Cristalografía y Mineralogía, 29071-Málaga, Spain.
| | - Pascual Olivera-Pastor
- Universidad de Málaga, Dpto. de Química Inorgánica, Cristalografía y Mineralogía, 29071-Málaga, Spain.
| | - Montse Bazaga-García
- Universidad de Málaga, Dpto. de Química Inorgánica, Cristalografía y Mineralogía, 29071-Málaga, Spain.
| | - Lucía Dos Santos-Gómez
- Department of Physical and Analytical Chemistry, University of Oviedo - CINN (CSIC), 33006, Oviedo, Spain.
| |
Collapse
|