1
|
Li WZ, Yang Y, Zhang XS, Liu Y, Luan J. Fabrication and assembly of supercapacitors based on Ni-based MOFs and their derivative materials for enhancing their electrochemical performances. NANOSCALE 2024; 16:16556-16570. [PMID: 39158027 DOI: 10.1039/d4nr02277g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Metal-organic frameworks (MOFs) are a class of porous materials that have been gradually applied in the field of supercapacitors, but they still present major challenges due to their inherent instability and poor conductivity. Herein, in order to solve these problems, Ni-based MOFs and their derivative materials with a particular spherical structure were prepared using a special calcination method. This unique structure not only improves the conductivity of the electrode, but also promotes the transport of electrons and ions during the electrochemical energy storage process. The as-prepared Ni-MOF@M-a4 has an amazing specific capacitance (637.78 F g-1) and a relatively low impedance. The fabricated asymmetric supercapacitor (ASC) consisted of Ni-MOF@M-a4 and activated carbon (AC) as positive and negative electrodes, respectively. The specific capacitance of this ASC was 18.14 F g-1. The maximum energy and power densities of the device reached 1.23 W h kg-1 and 175.00 W kg-1, showing good electrochemical performance. In this work, both an innovative strategy for the rational preparation of MOF arrays with good orientation and a special material preparation method are proposed, which have promising application potential in the field of asymmetric supercapacitors.
Collapse
Affiliation(s)
- Wen-Ze Li
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Ying Yang
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Xiao-Sa Zhang
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Yu Liu
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Jian Luan
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| |
Collapse
|
2
|
Bao Y, Xu H, Zhu Y, Chen P, Zhang Y, Chen Y. 2,6-diaminoanthraquinone anchored on functionalized biomass porous carbon boosts electrochemical stability for metal-free redox supercapacitor electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
3
|
Jin X, Wang S, Sang C, Yue Y, Xu X, Mei C, Xiao H, Lou Z, Han J. Patternable Nanocellulose/Ti 3C 2T x Flexible Films with Tunable Photoresponsive and Electromagnetic Interference Shielding Performances. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35040-35052. [PMID: 35861436 DOI: 10.1021/acsami.2c11567] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanocellulose-mediated MXene composites have attracted widespread attention in the fields of sustainable energy, wearable sensors, and electromagnetic interference (EMI) shielding. However, the effects of different nanocelluloses on the multifunctional properties of nanocellulose/Ti3C2Tx composites still need further exploration. Herein, we use three types of nanocelluloses, including bacterial cellulose (BC), cellulose nanocrystals (CNCs), and 2,2,6,6-tetramethylpiperidin-1-yloxy (TEMPO)-oxidized cellulose nanofibers (TOCNs), as intercalation to link Ti3C2Tx nanosheets via a self-assembly process, improving the dispersibility, film-forming ability, mechanical properties, and multifunctional performances of nanocelluloses/Ti3C2Tx hybrids through electrostatic forces and hydrogen bonding. The optimized ultrathin (∼40 μm) TOCN/Ti3C2Tx film integrates excellent tensile strength (∼98.89 MPa), long-term stability (during deformation and water erosion), favorable photoelectric response (photosensitivity up to 2620%), and temperature response (reaching 163 °C in only 12 s). Laser-cutting patterned TOCN/Ti3C2Tx films are assembled into flexible multifunctional electronics, exhibiting splendid photoresponse performances and tunable electromagnetic energy shielding capability (>96.4%) related to the variation of water content at the film-gel electrolyte interface. Multifunctional patterned devices based on TOCN/Ti3C2Tx composite films provide a novel pathway to rationally design wearable EMI devices with photoelectric response and photothermal conversion.
Collapse
Affiliation(s)
- Xiaoyue Jin
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaowei Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenyu Sang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiying Yue
- College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xinwu Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changtong Mei
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, 15 Dineen Drive, Fredericton, New Brunswick E3B 5A3, Canada
| | - Zhichao Lou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- College of Engineering, University of Georgia, Athens, Georgia 30605, United States
| | - Jingquan Han
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Chen Y, Huang J, Ma Y, Xu H. Enhancing the electrochemical performance of biomass activated carbon through confining acid red 18 into the nanopores. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Bao Y, Xu H, Chen P, Zhu Y, Zuo S, Kong X, Chen Y. Redox molecule Alizarin red S anchored on biomass-derived porous carbon for enhanced supercapacitive performance. NEW J CHEM 2022. [DOI: 10.1039/d2nj02394f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomass-derived porous carbon as a conductive framework in which the redox molecule Alizarin red S is anchored by strong interactions.
Collapse
Affiliation(s)
- Yuanhai Bao
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, China
| | - Hui Xu
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, China
| | - Pengdong Chen
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, China
| | - Yuanqiang Zhu
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, China
| | - Shasha Zuo
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, China
| | - Xiuqin Kong
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, China
| | - Yong Chen
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, China
| |
Collapse
|
6
|
Ruano G, Molina BG, Torras J, Alemán C. Free-Standing, Flexible Nanofeatured Polymeric Films Prepared by Spin-Coating and Anodic Polymerization as Electrodes for Supercapacitors. Molecules 2021; 26:4345. [PMID: 34299621 PMCID: PMC8303661 DOI: 10.3390/molecules26144345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022] Open
Abstract
Flexible and self-standing multilayered films made of nanoperforated poly(lactic acid) (PLA) layers separated by anodically polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) conducting layers have been prepared and used as electrodes for supercapacitors. The influence of the external layer has been evaluated by comparing the charge storage capacity of four- and five-layered films in which the external layer is made of PEDOT (PLA/PEDOT/PLA/PEDOT) and nanoperforated PLA (PLA/PEDOT/PLA/PEDOT/PLA), respectively. In spite of the amount of conducting polymer is the same for both four- and five-layered films, they exhibit significant differences. The electrochemical response in terms of electroactivity, areal specific capacitance, stability, and coulombic efficiency was greater for the four-layered electrodes than for the five-layered ones. Furthermore, the response in terms of leakage current and self-discharge was significantly better for the former electrodes than for the latter ones.
Collapse
Affiliation(s)
| | - Brenda G. Molina
- Departament d’Enginyeria Química, Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Edif. I2, 08019 Barcelona, Spain; (G.R.); (J.T.)
| | | | - Carlos Alemán
- Departament d’Enginyeria Química, Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Edif. I2, 08019 Barcelona, Spain; (G.R.); (J.T.)
| |
Collapse
|
7
|
Ping Y, Yang S, Han J, Li X, Zhang H, Xiong B, Fang P, He C. N-self-doped graphitic carbon aerogels derived from metal–organic frameworks as supercapacitor electrode materials with high-performance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138237] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|