1
|
Liu L, Li X, Yang R, Ma H, Liu E, Gao T, Sun T. Co 3S 4/MnS p-p heterojunction as a highly efficient electrocatalyst for water splitting and electrochemical oxidation of organic molecules. J Colloid Interface Sci 2025; 687:589-598. [PMID: 39978264 DOI: 10.1016/j.jcis.2025.02.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/15/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
In this work, Co3S4/MnS p-p heterojunction catalyst with hollow structure was successfully synthesized by one-step hydrothermal method. For oxygen evolution reaction (OER), urea oxidation reaction (UOR), lactate oxidation reaction (OER-LA) and glucose oxidation reaction (GOR), 1.59 V, 1.49 V, 1.54 V and 1.40 V vs. RHE are required to drive a current density of 50 mA cm-2, respectively, and the overpotential of hydrogen evolution reaction (HER) in 1 M KOH is 0.193 V at 50 mA cm-2. For the two-electrode overall water splitting in 1 M KOH, 1 M KOH containing 0.5 M urea, 1 M KOH containing 0.125 M lactate electrolyte and 1 M KOH containing 0.3 M glucose, water splitting voltages are only required at 1.73 V, 1.60 V, 1.62 V and 1.63 V to drive the current density of 50 mA cm-2. Moreover, its activity does not attenuate significantly in 1 M KOH containing 0.125 M lactate after continuous operation at 50 mA cm-2 for 200 h, showing excellent durability. In addition, the technology of glucose oxidation assisted water splitting for hydrogen production has been preliminarily explored, which also has excellent HER performance. Density functional theory (DFT) show that the p-p heterojunction between Co3S4 and MnS is conducive to the redistribution of electrons at the interface, thus promoting electron migration. Finally, the water splitting cell coupled with lactic acid oxidation reaction using polylactic acid pipette as source also exhibits high activity and stability. This study provides another idea and strategy for hydrogen production while waste plastic treatment.
Collapse
Affiliation(s)
- Lei Liu
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, PR China
| | - Xinyu Li
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, PR China
| | - Rui Yang
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, PR China
| | - Haixia Ma
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, PR China
| | - Enzhou Liu
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, PR China
| | - Ting Gao
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, PR China.
| | - Tao Sun
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
2
|
Chen L, Cao G, Li Y, Zu G, Duan R, Bai Y, Xue K, Fu Y, Xu Y, Wang J, Li X. A Review on Engineering Transition Metal Compound Catalysts to Accelerate the Redox Kinetics of Sulfur Cathodes for Lithium-Sulfur Batteries. NANO-MICRO LETTERS 2024; 16:97. [PMID: 38285078 PMCID: PMC10825111 DOI: 10.1007/s40820-023-01299-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/25/2023] [Indexed: 01/30/2024]
Abstract
Engineering transition metal compounds (TMCs) catalysts with excellent adsorption-catalytic ability has been one of the most effective strategies to accelerate the redox kinetics of sulfur cathodes. Herein, this review focuses on engineering TMCs catalysts by cation doping/anion doping/dual doping, bimetallic/bi-anionic TMCs, and TMCs-based heterostructure composites. It is obvious that introducing cations/anions to TMCs or constructing heterostructure can boost adsorption-catalytic capacity by regulating the electronic structure including energy band, d/p-band center, electron filling, and valence state. Moreover, the electronic structure of doped/dual-ionic TMCs are adjusted by inducing ions with different electronegativity, electron filling, and ion radius, resulting in electron redistribution, bonds reconstruction, induced vacancies due to the electronic interaction and changed crystal structure such as lattice spacing and lattice distortion. Different from the aforementioned two strategies, heterostructures are constructed by two types of TMCs with different Fermi energy levels, which causes built-in electric field and electrons transfer through the interface, and induces electron redistribution and arranged local atoms to regulate the electronic structure. Additionally, the lacking studies of the three strategies to comprehensively regulate electronic structure for improving catalytic performance are pointed out. It is believed that this review can guide the design of advanced TMCs catalysts for boosting redox of lithium sulfur batteries.
Collapse
Affiliation(s)
- Liping Chen
- Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Guiqiang Cao
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
| | - Yong Li
- Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Guannan Zu
- Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Ruixian Duan
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
| | - Yang Bai
- Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Kaiyu Xue
- Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yonghong Fu
- Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yunhua Xu
- Yulin University, Yulin, 719000, People's Republic of China
| | - Juan Wang
- Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| | - Xifei Li
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China.
- School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| |
Collapse
|
3
|
Wang T, He J, Zhu Z, Cheng XB, Zhu J, Lu B, Wu Y. Heterostructures Regulating Lithium Polysulfides for Advanced Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303520. [PMID: 37254027 DOI: 10.1002/adma.202303520] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/17/2023] [Indexed: 06/01/2023]
Abstract
Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium-sulfur batteries. Heterostructures, due to unique properties, have congenital advantages that are difficult to be achieved by single-component materials in regulating lithium polysulfides by efficient catalysis and strong adsorption to solve the problems of poor reaction kinetics and serious shuttling effect of lithium-sulfur batteries. In this review, the principles of heterostructures expediting lithium polysulfides conversion and anchoring lithium polysulfides are detailedly analyzed, and the application of heterostructures as sulfur host, interlayer, and separator modifier to improve the performance of lithium-sulfur batteries is systematically reviewed. Finally, the problems that need to be solved in the future study and application of heterostructures in lithium-sulfur batteries are prospected. This review will provide a valuable reference for the development of heterostructures in advanced lithium-sulfur batteries.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Jiarui He
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Zhi Zhu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Xin-Bing Cheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Jian Zhu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Yuping Wu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
4
|
Gong Y, Li J, Yang K, Li S, Xu M, Zhang G, Shi Y, Cai Q, Li H, Zhao Y. Towards Practical Application of Li-S Battery with High Sulfur Loading and Lean Electrolyte: Will Carbon-Based Hosts Win This Race? NANO-MICRO LETTERS 2023; 15:150. [PMID: 37286885 PMCID: PMC10247666 DOI: 10.1007/s40820-023-01120-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 06/09/2023]
Abstract
As the need for high-energy-density batteries continues to grow, lithium-sulfur (Li-S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li-S batteries has been ongoing for over two decades, leading to a significant number of publications and patents. However, the commercialization of Li-S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li-S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li-S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li-S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject.
Collapse
Affiliation(s)
- Yi Gong
- Advanced Technology Institute, University of Surrey, Guildford, Surrey , GU2 7XH, UK
| | - Jing Li
- Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Kai Yang
- Advanced Technology Institute, University of Surrey, Guildford, Surrey , GU2 7XH, UK
| | - Shaoyin Li
- Advanced Technology Institute, University of Surrey, Guildford, Surrey , GU2 7XH, UK
| | - Ming Xu
- Advanced Technology Institute, University of Surrey, Guildford, Surrey , GU2 7XH, UK
| | - Guangpeng Zhang
- Advanced Technology Institute, University of Surrey, Guildford, Surrey , GU2 7XH, UK
| | - Yan Shi
- College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Qiong Cai
- Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Huanxin Li
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QZ, UK.
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, People's Republic of China.
| | - Yunlong Zhao
- Advanced Technology Institute, University of Surrey, Guildford, Surrey , GU2 7XH, UK.
| |
Collapse
|
5
|
Liu W, Chu Y, Zhou J, Chen X, Wang Y, Li J, Wu F. A Honeycomb‐Structured CoF
2
‐Modified Separator Enabling High‐Performance Lithium−Sulfur Batteries. SMALL SCIENCE 2023. [DOI: 10.1002/smsc.202300006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Affiliation(s)
- Wenxin Liu
- Faculty of Materials Metallurgy and Chemistry Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Yuhang Chu
- Faculty of Materials Metallurgy and Chemistry Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Jinwei Zhou
- School of Metallurgy and Environment Central South University Changsha 410083 China
| | - Xuanfeng Chen
- School of Metallurgy and Environment Central South University Changsha 410083 China
| | - Yujie Wang
- School of Metallurgy and Environment Central South University Changsha 410083 China
| | - Jinhui Li
- Faculty of Materials Metallurgy and Chemistry Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Feixiang Wu
- School of Metallurgy and Environment Central South University Changsha 410083 China
| |
Collapse
|
6
|
Liang Z, Shen J, Xu X, Li F, Liu J, Yuan B, Yu Y, Zhu M. Advances in the Development of Single-Atom Catalysts for High-Energy-Density Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200102. [PMID: 35238103 DOI: 10.1002/adma.202200102] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/13/2022] [Indexed: 05/27/2023]
Abstract
Although lithium-sulfur (Li-S) batteries are promising next-generation energy-storage systems, their practical applications are limited by the growth of Li dendrites and lithium polysulfide shuttling. These problems can be mitigated through the use of single-atom catalysts (SACs), which exhibit the advantages of maximal atom utilization efficiency (≈100%) and unique catalytic properties, thus effectively enhancing the performance of electrode materials in energy-storage devices. This review systematically summarizes the recent progress in SACs intended for use in Li-metal anodes, S cathodes, and separators, briefly introducing the operating principles of Li-S batteries, the action mechanisms of the corresponding SACs, and the fundamentals of SACs activity, and then comprehensively describes the main strategies for SACs synthesis. Subsequently, the applications of SACs and the principles of SACs operation in reinforced Li-S batteries as well as other metal-S batteries are individually illustrated, and the major challenges of SACs usage in Li-S batteries as well as future development directions are presented.
Collapse
Affiliation(s)
- Ziwei Liang
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Jiadong Shen
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Xijun Xu
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Fangkun Li
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Jun Liu
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Bin Yuan
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Yan Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Min Zhu
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, Guangdong, 510641, China
| |
Collapse
|
7
|
Zhang D, Luo Y, Liu J, Dong Y, Xiang C, Zhao C, Shu H, Hou J, Wang X, Chen M. ZnFe 2O 4-Ni 5P 4 Mott-Schottky Heterojunctions to Promote Kinetics for Advanced Li-S Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23546-23557. [PMID: 35579110 DOI: 10.1021/acsami.2c04734] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The practical progress of lithium-sulfur batteries is hindered by the serious shuttle effect and the slow oxidation-reduction kinetics of polysulfides. Herein, the ZnFe2O4-Ni5P4 Mott-Schottky heterojunction material is prepared to address these issues. Benefitting from a self-generated built-in electric field, ZnFe2O4-Ni5P4 as an efficient bidirectional catalysis regulates the charge distribution at the interface and accelerates electron transfer. Meanwhile, the synergy of the strong adsorption capacity derived from metal oxides and the outstanding catalytic performance that comes from metal phosphides strengthens the adsorption of polysulfides, reduces the energy barrier during the reaction, accelerates the conversion between sulfur species, and further accelerates the reaction kinetics. Hence, the cell with ZnFe2O4-Ni5P4/S harvests a high discharge capacity of 1132.4 mAh g-1 at 0.5C and displays a high Coulombic efficiency of 99.3% after 700 cycles. The ZnFe2O4-Ni5P4/S battery still maintains a capacity of 610.1 mAh g-1 with 84.4% capacity retention after 150 cycles at 0.1C under a high sulfur loading of 3.2 mg cm-2. This work provides a favorable reference and advanced guidance for developing Mott-Schottky heterojunctions in lithium-sulfur batteries.
Collapse
Affiliation(s)
- Dan Zhang
- National Base for International Science & Technology Cooperation, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yixin Luo
- National Base for International Science & Technology Cooperation, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Jiaxiang Liu
- National Base for International Science & Technology Cooperation, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yu Dong
- National Base for International Science & Technology Cooperation, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Cong Xiang
- National Base for International Science & Technology Cooperation, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Chenke Zhao
- National Base for International Science & Technology Cooperation, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Shu
- National Base for International Science & Technology Cooperation, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Jianhua Hou
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, China
| | - Xianyou Wang
- National Base for International Science & Technology Cooperation, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Manfang Chen
- National Base for International Science & Technology Cooperation, School of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
8
|
Cai X, Yu L, Dong J, Cen Y, Zhu T, Yu D, Chen C, Zhang D, Liu Y, Pan F. Revealing the electrochemical mechanism of the conversion-type Co3S4 in a novel high-capacity Mg-Li hybrid battery. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Ng SF, Lau MYL, Ong WJ. Lithium-Sulfur Battery Cathode Design: Tailoring Metal-Based Nanostructures for Robust Polysulfide Adsorption and Catalytic Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008654. [PMID: 33811420 DOI: 10.1002/adma.202008654] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Lithium-sulfur (Li-S) batteries have a high specific energy capacity and density of 1675 mAh g-1 and 2670 Wh kg-1 , respectively, rendering them among the most promising successors for lithium-ion batteries. However, there are myriads of obstacles in the practical application and commercialization of Li-S batteries, including the low conductivity of sulfur and its discharge products (Li2 S/Li2 S2 ), volume expansion of sulfur electrode, and the polysulfide shuttle effect. Hence, immense attention has been devoted to rectifying these issues, of which the application of metal-based compounds (i.e., transition metal, metal phosphides, sulfides, oxides, carbides, nitrides, phosphosulfides, MXenes, hydroxides, and metal-organic frameworks) as sulfur hosts is profiled as a fascinating strategy to hinder the polysulfide shuttle effect stemming from the polar-polar interactions between the metal compounds and polysulfides. This review encompasses the fundamental electrochemical principles of Li-S batteries and insights into the interactions between the metal-based compounds and the polysulfides, with emphasis on the intimate structure-activity relationship corroborated with theoretical calculations. Additionally, the integration of conductive carbon-based materials to ameliorate the existing adsorptive abilities of the metal-based compound is systematically discussed. Lastly, the challenges and prospects toward the smart design of catalysts for the future development of practical Li-S batteries are presented.
Collapse
Affiliation(s)
- Sue-Faye Ng
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Sepang, Selangor Darul Ehsan, 43900, Malaysia
| | - Michelle Yu Ling Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor Darul Ehsan, 43900, Malaysia
| | - Wee-Jun Ong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Sepang, Selangor Darul Ehsan, 43900, Malaysia
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
10
|
Guo J, Huang Y, Zhao S, Li Z, Wang Z, Shao G, Liu J. Array-Structured Double-Ion Cooperative Adsorption Sites as Multifunctional Sulfur Hosts for Lithium-Sulfur Batteries with Low Electrolyte/Sulfur Ratio. ACS NANO 2021; 15:16322-16334. [PMID: 34590488 DOI: 10.1021/acsnano.1c05536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Low electrolyte/sulfur ratio (E/S) is a crucial factor that promotes the development of lithium-sulfur batteries (LSBs) with desired energy density. However, it causes multiple problems, including a strong "shuttle effect" during both the cycle and storage process, and limited sulfur utilization. Herein, we develop a Na2Ti6O13 (NTO) nanowire array as a multifunctional sulfur host to simultaneously tackle both the above problems. The synergistic coordination between Na and Ti cations in NTO can accelerate the conversion of soluble polysulfides (PSs) to insoluble sulfides and significantly enhance their adsorption. Therefore, accumulation of PSs, which is the primary cause of the "shuttle effect", can be avoided in two ways. One is fast conversion kinetics during cycles; another is strong PS adsorption, which can suppress the disproportionation of PSs during storage. The as-prepared array represents an easy-to-infiltrate structure with efficient electron transport that allows good wetting ability of the conductive surface toward the electrolyte. Therefore, it helps improve sulfur utilization that is mainly limited by the presence of unwetted conductive surface. Consequently, NTO/sulfur array cathodes exhibit high sulfur utilization and extended cycle- and shelf-lives at a low E/S (5:1). Our work suggests that array materials featuring cooperative multi-ion adsorption sites are promising hosts for LSBs.
Collapse
Affiliation(s)
- Junling Guo
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Yuanyuan Huang
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Siyuan Zhao
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Zixuan Li
- Zhengzhou Materials Genome Institute, Zhongyuanzhigu, Xingyang 450100, China
| | - Zhuo Wang
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
- Zhengzhou Materials Genome Institute, Zhongyuanzhigu, Xingyang 450100, China
| | - Guosheng Shao
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
- Zhengzhou Materials Genome Institute, Zhongyuanzhigu, Xingyang 450100, China
| | - Jinping Liu
- School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
11
|
Neoteric hollow tubular MnS/Co3S4 hybrids as high-performance electrode materials for supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Jin G, Zhang J, Dang B, Wu F, Li J. Engineering zirconium-based metal-organic framework-801 films on carbon cloth as shuttle-inhibiting interlayers for lithium-sulfur batteries. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2068-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Li Y, Zhang J, Chen Q, Xia X, Chen M. Emerging of Heterostructure Materials in Energy Storage: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100855. [PMID: 34033149 DOI: 10.1002/adma.202100855] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/28/2021] [Indexed: 06/12/2023]
Abstract
With the ever-increasing adaption of large-scale energy storage systems and electric devices, the energy storage capability of batteries and supercapacitors has faced increased demand and challenges. The electrodes of these devices have experienced radical change with the introduction of nano-scale materials. As new generation materials, heterostructure materials have attracted increasing attention due to their unique interfaces, robust architectures, and synergistic effects, and thus, the ability to enhance the energy/power outputs as well as the lifespan of batteries. In this review, the recent progress in heterostructure from energy storage fields is summarized. Specifically, the fundamental natures of heterostructures, including charge redistribution, built-in electric field, and associated energy storage mechanisms, are summarized and discussed in detail. Furthermore, various synthesis routes for heterostructures in energy storage fields are roundly reviewed, and their advantages and drawbacks are analyzed. The superiorities and current achievements of heterostructure materials in lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), lithium-sulfur batteries (Li-S batteries), supercapacitors, and other energy storage devices are discussed. Finally, the authors conclude with the current challenges and perspectives of the heterostructure materials for the fields of energy storage.
Collapse
Affiliation(s)
- Yu Li
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Jiawei Zhang
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Qingguo Chen
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Xinhui Xia
- Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Minghua Chen
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| |
Collapse
|
14
|
Liu J, Liu X, Zhang Q, Liang X, Yan J, Tan HH, Yu Y, Wu Y. Integration of nickel phosphide nanodot-enriched 3D graphene-like carbon with carbon fibers as self-supported sulfur hosts for advanced lithium sulfur batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Deng X, Li Y, Li L, Qiao S, Lei D, Shi X, Zhang F. Sulfonated covalent organic framework modified separators suppress the shuttle effect in lithium-sulfur batteries. NANOTECHNOLOGY 2021; 32:275708. [PMID: 33765671 DOI: 10.1088/1361-6528/abf211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Lithium-sulfur batteries (LSBs) have gained intense research enthusiasm due to their high energy density. Nevertheless, the 'shuttle effect' of soluble polysulfide (a discharge product) reduces their cycling stability and capacity, thus restricting their practical application. To tackle this challenging issue, we herein report a sulfonated covalent organic framework modified separator (SCOF-Celgard) that alleviates the shuttling of polysulfide anions and accelerates the migration of Li+ions. Specifically, the negatively charged sulfonate can inhibit the same charged polysulfide anion through electrostatic repulsion, thereby improving the cycle stability of the battery and preventing the Li-anode from being corroded. Meanwhile, the sulfonate groups may facilitate the positively charged lithium ions to pass through the separator. Consequently, the battery assembled with the SCOF-Celgard separator exhibits an 81.1% capacity retention after 120 cycles at 0.5 C, which is far superior to that (55.7%) of the battery with a Celgard separator. It has a low capacity degradation of 0.067% per cycle after 600 cycles at 1 C, and a high discharge capacity (576 mAh g-1) even at 2 C. Our work proves that the modification of a separator with a SCOF is a viable and effective route for enhancing the electrochemical performance of a LSB.
Collapse
Affiliation(s)
- Xiaoyu Deng
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, People's Republic of China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Yongpeng Li
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, People's Republic of China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Lv Li
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, People's Republic of China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Shaoming Qiao
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, People's Republic of China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Da Lei
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, People's Republic of China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Xiaoshan Shi
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, People's Republic of China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Fengxiang Zhang
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, People's Republic of China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
16
|
A Novel Synthesizing Strategy of 3D Cose2 Porous Hollow Flowers for High Performance Lithium–Sulfur Batteries. Catalysts 2021. [DOI: 10.3390/catal11020273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Redox kinetics of lithium polysulfides (LiPSs) conversion and poor electrical conductivity of sulfur during the charge-discharge process greatly inhibit the commercialization of high-performance lithium–sulfur (Li–S) batteries. Herein, we synthesized CoSe2 porous hollow flowers (CoSe2-PHF) by etching and further selenizing layered double hydroxide, which combined the high catalytic activity of transition metal compound and high electrical conductivity of selenium. The obtained CoSe2-PHF can efficiently accelerate the catalytic conversion of LiPSs, expedite the electron transport, and improve utilization of active sulfur during the charge-discharge process. As a result, with CoSe2-PHF/S-based cathodes, the Li–S batteries exhibited a reversible specific capacity of 955.8 mAh g−1 at 0.1 C and 766.0 mAh g−1 at 0.5 C, along with a relatively small capacity decay rate of 0.070% per cycle within 400 cycles at 1 C. Even at the high rate of 3 C, the specific capacity of 542.9 mAh g−1can be maintained. This work enriches the way to prepare porous composites with high catalytic activity and electrical conductivity as sulfur hosts for high-rate, long-cycle rechargeable Li–S batteries.
Collapse
|
17
|
Saroha R, Ahn JH, Cho JS. A short review on dissolved lithium polysulfide catholytes for advanced lithium-sulfur batteries. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0729-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Garapati MS, Sundara R. Enhancing polysulfide confinement and redox kinetics by electrocatalytic interlayer for highly stable lithium–sulfur batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Huang M, Zhang R, Yang Z, Chen J, Deng J, Fakhri A, Gupta VK. Synthesis of Co3S4-SnO2/polyvinylpyrrolidone-cellulose heterojunction as highly performance catalyst for photocatalytic and antimicrobial properties under ultra-violet irradiation. Int J Biol Macromol 2020; 162:220-228. [DOI: 10.1016/j.ijbiomac.2020.06.092] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022]
|
20
|
Abstract
A review with 132 references. Societal and regulatory pressures are pushing industry towards more sustainable energy sources, such as solar and wind power, while the growing popularity of portable cordless electronic devices continues. These trends necessitate the ability to store large amounts of power efficiently in rechargeable batteries that should also be affordable and long-lasting. Lithium-sulfur (Li-S) batteries have recently gained renewed interest for their potential low cost and high energy density, potentially over 2600 Wh kg−1. The current review will detail the most recent advances in early 2020. The focus will be on reports published since the last review on Li-S batteries. This review is meant to be helpful for beginners as well as useful for those doing research in the field, and will delineate some of the cutting-edge adaptations of many avenues that are being pursued to improve the performance and safety of Li-S batteries.
Collapse
|