1
|
Jing S, Sun Z, Qu K, Shi C, Huang Z. Sodium alginate-based gel electrodes without binder for high-performance supercapacitors. Int J Biol Macromol 2023; 234:123699. [PMID: 36801295 DOI: 10.1016/j.ijbiomac.2023.123699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
Binder use results in an expansion of the dead volume of the active material and a decline in the active sites, which will lead to a decrease in the electrochemical activity of the electrode. Therefore, the construction of electrode materials without the binder has been the research focus. Here, a novel ternary composite gel electrode without the binder (reduced graphene oxide/sodium alginate/copper cobalt sulfide, rGSC) were designed using a convenient hydrothermal method. Benefiting from the dual-network structure of rGS via the hydrogen bonding between rGO and sodium alginate not only better encapsulates CuCo2S4 with high pseudo-capacitance, but also simplifies the electron transfer path, and reduces the electron transfer resistance, which leads to a remarkable enhanced electrochemical performance. The rGSC electrode exhibits a specific capacitance of up to 1600.25 F g-1 when the scan rate is 10 mV s-1. The asymmetric supercapacitor was constructed with rGSC and activated carbon as the positive and negative electrode in a 6 M KOH electrolyte. It has a large specific capacitance and high energy/power density (10.7 Wh kg-1/1329.1 W kg-1). This work proposes a promising strategy for designing gel electrodes for higher energy density and larger capacitance without the binder.
Collapse
Affiliation(s)
- Songjie Jing
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, and College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Zhe Sun
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, and College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Keqi Qu
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, and College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Cai Shi
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, and College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Zhanhua Huang
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, and College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
2
|
Liu G, Liu J, Xu K, Wang L, Xiong S. Fabrication of Flexible Graphene Paper/MnO
2
Composite Supercapacitor Electrode through Electrodeposition of MnO
2
Nanoparticles on Graphene Paper. ChemistrySelect 2021. [DOI: 10.1002/slct.202101207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gu Liu
- Xi'an Research Institute of High Technology Xi'an 710025 PR China
| | - Jian Liu
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an 710054 PR China
| | - Kejun Xu
- Xi'an Research Institute of High Technology Xi'an 710025 PR China
| | - Liuying Wang
- Xi'an Research Institute of High Technology Xi'an 710025 PR China
| | - Shanxin Xiong
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an 710054 PR China
| |
Collapse
|
3
|
Chan YH, Tsai CY, Shih YJ, Wu MS. Nanostructured tin oxide layer as a porous template for the growth of manganese oxide nanobouquets and a conductive support network for supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|