1
|
Wang G, Jin Z, Guo Q. Ordered Self-supporting NiV LDHs@P-Nickel foam Nano-array as High-Performance supercapacitor electrode. J Colloid Interface Sci 2021; 583:1-12. [DOI: 10.1016/j.jcis.2020.08.127] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/02/2023]
|
2
|
Hierarchical Manganese–Iron-Layered Double Hydroxide Nanosheets for Asymmetric Supercapacitors. ENERGIES 2020. [DOI: 10.3390/en13184616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work presents a synthesis of hierarchical manganese–iron-layered double hydroxide (MnFe-LDH) nanostructured electrodes using the hydrothermal synthesis route by varying the reaction time for electrochemical energy storage applications. The electrochemical behavior of the MnFe-LDH electrodes synthesized at different reaction times was analyzed in a three-electrode cell configuration using 2 M KOH electrolyte. The uniform and well-organized MnFe-LDH nanosheet electrode (MnFe-12h) showed the maximum areal capacitance of 2013 mFcm−2 at a 5 mVs−1 scan rate, and 1886 mFcm−2 at a 25 mA applied current. Furthermore, the electrochemical behavior of MnFe-12h was examined by assembling an asymmetric cell device using activated carbon (AC) as a negative electrode and MnFe-12h as a positive electrode and it was tested in a wide voltage window range of 0.0 to 1.6 V. This asymmetric cell device achieved an appropriate energy density of 44.9 µW h cm−2 (55.01 W h kg−1), with a power density of 16 mW cm−2 (5000 W kg−1) at an applied current of 10 mA, and had a long-term cycling stability (93% capacitance retention after 5000 cycles) within the 1.6 V operating voltage window.
Collapse
|
3
|
|