1
|
Liu J, He X, Cai J, Zhou J, Liu B, Zhang S, Sun Z, Su P, Qu D, Li Y. 3D Porous VO x/N-Doped Carbon Nanosheet Hybrids Derived from Cross-Linked Dicyandiamide-Chitosan Hydrogels for Superior Supercapacitor Electrode Materials. Polymers (Basel) 2023; 15:3565. [PMID: 37688191 PMCID: PMC10490277 DOI: 10.3390/polym15173565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Three-dimensional porous carbon materials with moderate heteroatom-doping have been extensively investigated as promising electrode materials for energy storage. In this study, we fabricated a 3D cross-linked chitosan-dicyandiamide-VOSO4 hydrogel using a polymerization process. After pyrolysis at high temperature, 3D porous VOx/N-doped carbon nanosheet hybrids (3D VNCN) were obtained. The unique 3D porous skeleton, abundant doping elements, and presence of VOx 3D VNCN pyrolyzed at 800 °C (3D VNCN-800) ensured excellent electrochemical performance. The 3D VNCN-800 electrode exhibits a maximum specific capacitance of 408.1 F·g-1 at 1 A·g-1 current density and an admirable cycling stability with 96.8% capacitance retention after 5000 cycles. Moreover, an assembled symmetrical supercapacitor based on the 3D VNCN-800 electrode delivers a maximum energy density of 15.6 Wh·Kg-1 at a power density of 600 W·Kg-1. Our study demonstrates a potential guideline for the fabrication of porous carbon materials with 3D structure and abundant heteroatom-doping.
Collapse
Affiliation(s)
- Jinghua Liu
- Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery, Guangxi Engineering Research Center for Characteristic Metallic Powder Materials, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China; (J.L.); (J.Z.); (B.L.); (S.Z.); (Z.S.)
| | - Xiong He
- Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery, Guangxi Engineering Research Center for Characteristic Metallic Powder Materials, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China; (J.L.); (J.Z.); (B.L.); (S.Z.); (Z.S.)
| | - Jiayang Cai
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; (J.C.); (P.S.)
| | - Jie Zhou
- Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery, Guangxi Engineering Research Center for Characteristic Metallic Powder Materials, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China; (J.L.); (J.Z.); (B.L.); (S.Z.); (Z.S.)
| | - Baosheng Liu
- Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery, Guangxi Engineering Research Center for Characteristic Metallic Powder Materials, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China; (J.L.); (J.Z.); (B.L.); (S.Z.); (Z.S.)
| | - Shaohui Zhang
- Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery, Guangxi Engineering Research Center for Characteristic Metallic Powder Materials, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China; (J.L.); (J.Z.); (B.L.); (S.Z.); (Z.S.)
| | - Zijun Sun
- Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery, Guangxi Engineering Research Center for Characteristic Metallic Powder Materials, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China; (J.L.); (J.Z.); (B.L.); (S.Z.); (Z.S.)
| | - Pingping Su
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; (J.C.); (P.S.)
| | - Dezhi Qu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; (J.C.); (P.S.)
| | - Yudong Li
- Key Laboratory of Bio-Based Material Science & Technology, Northeast Forestry University, Harbin 150090, China;
| |
Collapse
|
2
|
Wang Q, Ding Y, Dahlgren RA, Sun Y, Gu J, Li Y, Liu T, Wang X. Ultrafine V 2O 5-anchored 3D N-doped carbon nanocomposite with augmented dual-enzyme mimetic activity for evaluating total antioxidant capacity. Anal Chim Acta 2023; 1252:341072. [PMID: 36935159 DOI: 10.1016/j.aca.2023.341072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Total antioxidant capacity (TAC) can be evaluated by detecting the content of antioxidants, such as ascorbic acid, based on the enzyme-mimetic activity of nanomaterials. Herein, we fabricated a 3D-V2O5/NC nanocomposite using a self-templating strategy, which achieved ultrafine particles (∼2.5 nm), a porous carbon layer, large specific surface area (152.4 m2/g), N-doping and heterogeneous structure. The strong catalytic activity of 3D-V2O5/NC resulted from the integrated effect between the ultrafine structure of V2O5 nanoparticles and the 3D porous nitrogen-doped carbon framework, effectively increasing the number of active sites. This nanozyme presented a higher catalytic activity than its components or precursors in the nanocomposite (e.g., VN/NC, NC, V2O5, and VO2/g-C3N4). ROS scavenging experiments confirmed that the dual enzyme-like activity of 3D-V2O5/NC (catalase-like and oxidase-like) resulted from their co-participation of ‧O2-, h+ and ‧OH, among which ‧O2- played a crucial role in the catalytic color reaction. By virtue of the 3D-V2O5/NC nanoenzyme activity and TMB as a chromogenic substrate, the mixed system of 3D-V2O5/NC + TMB + H2O2 provided a low detection limit (0.03 μM) and suitable recovery (93.0-109.5%) for AA. Additionally, a smartphone-based colorimetric application was developed employing "Thing Identify" software to evaluate TAC in beverages. The colorimetric sensor and smartphone-detection platform provide a better or comparable analytical performance for TAC assessment in comparison to commercial ABTS test kits. The newly developed smartphone-based colorimetric platform presents several prominent advantageous, such as low cost, simple/rapid operation, and feasibility for outdoor use.
Collapse
Affiliation(s)
- Qi Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yongli Ding
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, UC, 95616, USA
| | - Yue Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jingjing Gu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yuhao Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tingting Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
3
|
Yang H, Ning P, Wen J, Xie Y, Su C, Li Y, Cao H. Structure control in VNxOy by hydrogen bond association extraction for enhanced zinc ion storage. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Wang H, Li J, Li K, Lin Y, Chen J, Gao L, Nicolosi V, Xiao X, Lee JM. Transition metal nitrides for electrochemical energy applications. Chem Soc Rev 2021; 50:1354-1390. [DOI: 10.1039/d0cs00415d] [Citation(s) in RCA: 295] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review comprehensively summarizes the progress on the structural and electronic modulation of transition metal nitrides for electrochemical energy applications.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University
- Singapore 637459
- Singapore
| | - Jianmin Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices
- School of Electronic Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu
- China
| | - Ke Li
- School of Chemistry
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER)
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Yanping Lin
- College of Energy, Soochow Institute for Energy and Materials Innovations, & Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University
- Suzhou 215006
- China
| | - Jianmei Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University
- Suzhou 215123
- China
| | - Lijun Gao
- College of Energy, Soochow Institute for Energy and Materials Innovations, & Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University
- Suzhou 215006
- China
| | - Valeria Nicolosi
- School of Chemistry
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER)
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Xu Xiao
- State Key Laboratory of Electronic Thin Film and Integrated Devices
- School of Electronic Science and Engineering
- University of Electronic Science and Technology of China
- Chengdu
- China
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University
- Singapore 637459
- Singapore
| |
Collapse
|
5
|
Duan C, Meng Y, Wang Y, Zhang Z, Ge Y, Li X, Guo Y, Xiao D. High-crystallinity and high-rate Prussian Blue analogues synthesized at the oil–water interface. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01361g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A two-phase method was first used for preparing Prussian blue analogues (PBAs), and PBAs synthesized at the oil–water interface showed a highly crystalline structure and superior high-rate performance.
Collapse
Affiliation(s)
- Ceheng Duan
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Yan Meng
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Yujue Wang
- Institute of New Energy and Low-Carbon Technology (INELT)
- Sichuan University
- Chengdu
- China
| | - Zhaokun Zhang
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Yunchen Ge
- Institute of New Energy and Low-Carbon Technology (INELT)
- Sichuan University
- Chengdu
- China
| | - Xiaopeng Li
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Yong Guo
- Institute of New Energy and Low-Carbon Technology (INELT)
- Sichuan University
- Chengdu
- China
- College of Chemistry
| | - Dan Xiao
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
- Institute of New Energy and Low-Carbon Technology (INELT)
| |
Collapse
|