1
|
Wang R, Wang L, Liu R, Li X, Wu Y, Ran F. "Fast-Charging" Anode Materials for Lithium-Ion Batteries from Perspective of Ion Diffusion in Crystal Structure. ACS NANO 2024; 18:2611-2648. [PMID: 38221745 DOI: 10.1021/acsnano.3c08712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
"Fast-charging" lithium-ion batteries have gained a multitude of attention in recent years since they could be applied to energy storage areas like electric vehicles, grids, and subsea operations. Unfortunately, the excellent energy density could fail to sustain optimally while lithium-ion batteries are exposed to fast-charging conditions. In actuality, the crystal structure of electrode materials represents the critical factor for influencing the electrode performance. Accordingly, employing anode materials with low diffusion barrier could improve the "fast-charging" performance of the lithium-ion battery. In this Review, first, the "fast-charging" principle of lithium-ion battery and ion diffusion path in the crystal are briefly outlined. Next, the application prospects of "fast-charging" anode materials with various crystal structures are evaluated to search "fast-charging" anode materials with stable, safe, and long lifespan, solving the remaining challenges associated with high power and high safety. Finally, summarizing recent research advances for typical "fast-charging" anode materials, including preparation methods for advanced morphologies and the latest techniques for ameliorating performance. Furthermore, an outlook is given on the ongoing breakthroughs for "fast-charging" anode materials of lithium-ion batteries. Intercalated materials (niobium-based, carbon-based, titanium-based, vanadium-based) with favorable cycling stability are predominantly limited by undesired electronic conductivity and theoretical specific capacity. Accordingly, addressing the electrical conductivity of these materials constitutes an effective trend for realizing fast-charging. The conversion-type transition metal oxide and phosphorus-based materials with high theoretical specific capacity typically undergoes significant volume variation during charging and discharging. Consequently, alleviating the volume expansion could significantly fulfill the application of these materials in fast-charging batteries.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Lu Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Rui Liu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Xiangye Li
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Youzhi Wu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| |
Collapse
|
2
|
Yu G, Zhang Q, Jing J, Wang X, Li Y, Bai X, Li T. Bulk Modification of Porous TiNb 2 O 7 Microsphere to Achieve Superior Lithium-Storage Properties at Low Temperature. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303087. [PMID: 37559165 DOI: 10.1002/smll.202303087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/14/2023] [Indexed: 08/11/2023]
Abstract
TiNb2 O7 , as a promising alternative of Li4 Ti5 O12 , exhibits giant potential as low-temperature anode due to its higher theoretical capacity and comparable structural stability. However, the sluggish electronic conductivity still remains a challenge. Herein, bulk modification of Cu+ doping in porous TiNb2 O7 microsphere is proposed via a simple one-step solvothermal method with subsequent calcination treatment. The results show that the electronic conductivity is improved effectively due to the reduced band gap after doping, while enhanced lithium-ion diffusion is achieved benefiting from the increased interplanar spacing. Therefore, the optimal sample of Cu0.06 Ti0.94 Nb2 O7 exhibits a high reversible capacity of 244.4 mA h g-1 at 100 mA g-1 after 100 cycles, superior rate capability, and long-term cycling stability at 1000 mA g-1 at room temperature. Particularly, it can also display good performance in a wide temperature range from 25 to -30 °C, including a reversible capacity of 76.6 mA h g-1 at -20 °C after 200 cycles at 200 mA g-1 . Moreover, Cu0.06 Ti0.94 Nb2 O7 //LiFePO4 full cell can deliver a high reversible capacity of 177.5 mA h g-1 at 100 mA g-1 . The excellent electrochemical properties at both ambient and low-temperatures demonstrate the great potential of Cu+ -doped TiNb2 O7 in energy-storage applications.
Collapse
Affiliation(s)
- Gengchen Yu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Qi Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, P. R. China
| | - Jiayi Jing
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Xu Wang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Yifan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, P. R. China
| | - Xue Bai
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Tao Li
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education, Shandong University, Jinan, 250061, P. R. China
| |
Collapse
|
3
|
Zhang X, Toledo-Carrillo EA, Yu D, Dutta J. Effect of Surface Charge on the Fabrication of Hierarchical Mn-Based Prussian Blue Analogue for Capacitive Desalination. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40371-40381. [PMID: 36006982 PMCID: PMC9460436 DOI: 10.1021/acsami.2c08192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Multiple and hierarchical manganese (Mn)-based Prussian blue analogues obtained on different substrates are successfully prepared using a universal, facile, and simple strategy. Different functional groups and surface charge distributions on carbon cloth have significant effects on the morphologies and nanostructures of Mn-based Prussian blue analogues, thereby indirectly affecting their physicochemical properties. Combined with the advantages of the modified carbon cloth and the nanostructured Mn-based Prussian blue analogues, the composite with negative surface charge formed by the electronegativity differences shows good electrochemical properties, leading to improvement in charge efficiency during capacitive desalination. An asymmetric device fabricated with Mn-based Prussian blue analogue-modified F-doped carbon cloth as the cathode and acid-treated carbon cloth as the anode presents the highest salt adsorption capacity of 10.92 mg g-1 with a charge efficiency of 82.28% and the lowest energy consumption of 0.45 kW h m-3 at 1 V due to the main influencing factor from the negative surface charge leading to co-ion expulsion boosting the capacitive deionization performance. We provide insights for further exploration of the relationship between second-phase materials and carbon cloth, while offering some guidance for the design and preparation of electrodes for desalination and beyond.
Collapse
|
4
|
|
5
|
Boehm AK, Husmann S, Besch M, Janka O, Presser V, Gallei M. Porous Mixed-Metal Oxide Li-Ion Battery Electrodes by Shear-Induced Co-assembly of Precursors and Tailored Polymer Particles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61166-61179. [PMID: 34913692 DOI: 10.1021/acsami.1c19027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Due to their various applications, metal oxides are of high interest for fundamental research and commercial usage. Per applications as catalysts or electrochemical devices, the tailored design of metal oxides featuring a high specific surface area and additional functionalities is of the utmost importance for the performance of the resulting materials. We report a new method for preparing free-standing films consisting of hierarchically porous metal oxides (titanium and niobium based) by combining emulsion polymerization and shear-induced monodisperse particle self-assembly in the presence of sol-gel precursors. After thermal treatment, the resulting porous materials can be used as electrodes in Li-ion batteries. The titanium and niobium sol-gel precursors were partially immobilized to the surface of organic core-interlayer particles featuring hydroxyl groups to obtain hybrid organic-inorganic particles through the melt-shear organization process. Free-standing particle-based films, in analogy to elastomeric opal films and colloidal crystals, can be prepared in a convenient one-step preparation process. After thermal treatment, ordered pores are obtained, while the pristine metal oxide precursor shell can be converted to the (mixed) metal oxide matrix. Heat treatment under CO2 leads to mixed-TiNb oxide/carbon hybrid materials. The highly porous derivative structure enhances electrolyte permeation. When tested as Li-ion battery electrodes, it shows a specific capacity of 335 mAh·g-1 at a rate of 10 mA·g-1. After 1000 cycles at 250 mA·g-1, the electrodes still provided a specific capacity of 191 mAh·g-1.
Collapse
Affiliation(s)
- Anna K Boehm
- Chair in Polymer Chemistry, Saarland University, Campus C4.2, 66123 Saarbrücken, Germany
| | - Samantha Husmann
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Marie Besch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Department of Materials Science & Engineering, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany
| | - Oliver Janka
- Inorganic Solid State Chemistry, Saarland University, Campus C4 1, 66123 Saarbrücken, Germany
| | - Volker Presser
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Department of Materials Science & Engineering, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany
- saarene, Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123 Saarbrücken, Germany
| | - Markus Gallei
- Chair in Polymer Chemistry, Saarland University, Campus C4.2, 66123 Saarbrücken, Germany
- saarene, Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123 Saarbrücken, Germany
| |
Collapse
|
6
|
Li L, Xie M, Zhang Y, Xu Y, Li J, Shan Y, Zhao Y, Zhou D, Chen X, Cui W. Thermal safety and performances analysis of gel polymer electrolytes synthesized by in situ polymerization for Li-ion battery. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04965-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
7
|
Yuan F, Zhang W, Zhang D, Wang Q, Li Z, Li W, Sun H, Wu Y, Wang B. Recent progress in electrochemical performance of binder-free anodes for potassium-ion batteries. NANOSCALE 2021; 13:5965-5984. [PMID: 33885600 DOI: 10.1039/d1nr00077b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Potassium ion batteries (PIBs) are regarded as one of the most promising candidates for large-scale stationary energy storage beyond lithium-ion batteries (LIBs), owing to the abundance of potassium resources and low cost. Unfortunately, the practical application of PIBs is severely restricted by their poor rate capacity and unsatisfactory cycle performance. In traditional electrodes, a binder usually plays an important role in integrating individual active materials with conductive additives. Nevertheless, binders are not only generally electrochemically inactive but also insulating, which is unfavorable for improving overall energy density and cycling stability. To this end, in terms of both improved electronic conductivity and electrochemical reaction reversibility, binder-free electrodes offer great potential for high-performance PIBs. Moreover, the anode is a crucial configuration to determine full cell electrochemical performance. Therefore, this review analyzes in detail the electrochemical properties of the different type binder-free anodes, including carbon-based substrates (graphene, carbon nanotubes, carbon nanofibers, and so on), MXene-based substrates and metal-based substrates (Cu and Ni). More importantly, the recent progress, critical issues, challenges, and perspectives in binder-free electrodes for PIBs are further discussed. This review will provide theoretical guidance for the synthesis of high-performance anode materials and promote the further development of PIBs.
Collapse
Affiliation(s)
- Fei Yuan
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Polydopamine-derived N-doped carbon-coated porous TiNb2O7 microspheres as anode materials with superior rate performance for lithium-ion batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137623] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Insight into the performance of the mesoporous structure SiOx nanoparticles anchored on carbon fibers as anode material of lithium-ion batteries. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Yu L, Lv J, Zhou Z, Li Y, Wei M. Hierarchical structure TiNb 2O 7 microspheres derived from titanate for high-performance lithium-ion batteries. CrystEngComm 2021. [DOI: 10.1039/d1ce00531f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hierarchical structure TiNb2O7 microspheres derived from titanate displayed satisfactory long-term cycling stability and prominent rate capability for lithium-ion batteries.
Collapse
Affiliation(s)
- Ling Yu
- Fujian Key Laboratory of Electrochemical Energy Storage Materials
- Fuzhou University
- Fuzhou
- China
| | - Jintao Lv
- Fujian Key Laboratory of Electrochemical Energy Storage Materials
- Fuzhou University
- Fuzhou
- China
| | - Ziwang Zhou
- Fujian Key Laboratory of Electrochemical Energy Storage Materials
- Fuzhou University
- Fuzhou
- China
| | - Yafeng Li
- Fujian Key Laboratory of Electrochemical Energy Storage Materials
- Fuzhou University
- Fuzhou
- China
| | - Mingdeng Wei
- Fujian Key Laboratory of Electrochemical Energy Storage Materials
- Fuzhou University
- Fuzhou
- China
- State Key Laboratory of Photocatalysis on Energy and Environment
| |
Collapse
|
11
|
Controlled fabrication and performances of single-core/dual-shell hierarchical structure m-TNO@TiC@NC anode composite for lithium-ion batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|