1
|
Wei Q, Meng C, Xiao LZ, He Y, Yin Q, Zhou Y, Song S, Qiang R, Yang Y, Li Z, Hu Z. Asymmetric Supercapacitors based on 1,10-phenanthroline-5,6-dione Molecular Electrodes Paired with MXene. CHEMSUSCHEM 2024; 17:e202301370. [PMID: 37962513 DOI: 10.1002/cssc.202301370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
An efficient approach to increase the energy density of supercapacitors is to prepare electrode materials with larger specific capacitance and increase the potential difference between the positive and negative electrodes in the device. Herein, an organic molecular electrode (OME) is prepared by anchoring 1,10-phenanthroline-5,6-dione (PD), which possesses two pyridine rings and an electron-deficient conjugated system, onto reduced graphene oxide (rGO). Because of the electron-deficient conjugated structure of PD molecule, PD/rGOs exhibit a more positive redox peak potential along with the advantages of high capacitance-controlled behaviour and fast reaction kinetics. Additionally, the small energy gap between the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) leads to increased conductivity in PD/rGO. To assemble the asymmetric supercapacitor (ASC), a two-dimensional metal carbide, as known as MXene, with a chemical composition of Ti3C2Tx is selected as the negative electrode due to its exceptional performance, and PD/rGO-0.5 is employed as the positive electrode. Consequently, the working voltage is expanded up to 1.8 V. Through further electrochemical measurements, the assembled ASC (PD/rGO-0.5//Ti3C2Tx) achieves a remarkable energy density of 36.8 Wh kg-1. Remarkably, connecting two ASCs in series can power 73 LEDs, showcasing its promising potential for energy storage applications.
Collapse
Affiliation(s)
- Qiaoqiao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Congcong Meng
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Liang Zhikun Xiao
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Yuanyuan He
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Qing Yin
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Yi Zhou
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Shengmiao Song
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Ruibing Qiang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Yuying Yang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Zhimin Li
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Zhongai Hu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| |
Collapse
|
2
|
Shi M, Peng C, Zhang X. A Novel Aqueous Asymmetric Supercapacitor based on Pyrene-4,5,9,10-Tetraone Functionalized Graphene as the Cathode and Annealed Ti 3 C 2 T x MXene as the Anode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301449. [PMID: 36892168 DOI: 10.1002/smll.202301449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Asymmetric supercapacitors (ASCs), employing two dissimilar electrode materials with a large redox peak position difference as cathode and anode, have been designed to further broaden the voltage window and improve the energy density of supercapacitors. Organic molecule based electrodes can be constructed by combining redox-active organic molecules with conductive carbon-based materials such as graphene. Herein, pyrene-4,5,9,10-tetraone (PYT), a redox-active molecule with four carbonyl groups, exhibits a four-electron transfer process and can potentially deliver a high capacity. PYT is noncovalently combined with two different kinds of graphene (Graphenea [GN] and LayerOne [LO]) at different mass ratios. The PYT-functionalized GN electrode (PYT/GN 4-5) possesses a high capacity of 711 F g-1 at 1 A g-1 in 1 M H2 SO4 . To match with the PYT/GN 4-5 cathode, an annealed-Ti3 C2 Tx (A-Ti3 C2 Tx ) MXene anode with a pseudocapacitive character is prepared by pyrolysis of pure Ti3 C2 Tx . The assembled PYT/GN 4-5//A-Ti3 C2 Tx ASC delivers an outstanding energy density of 18.4 Wh kg-1 at a power density of 700 W kg-1 . The PYT-functionalized graphene holds great potential for high-performance energy storage devices.
Collapse
Affiliation(s)
- Mangmang Shi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, Göteborg, SE-412 96, Sweden
- School of physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Cheng Peng
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, Göteborg, SE-412 96, Sweden
| | - Xiaoyan Zhang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, Göteborg, SE-412 96, Sweden
| |
Collapse
|
5
|
Du X, Qin Z, Li Z. Free-Standing rGO-CNT Nanocomposites with Excellent Rate Capability and Cycling Stability for Na 2SO 4 Aqueous Electrolyte Supercapacitors. NANOMATERIALS 2021; 11:nano11061420. [PMID: 34071157 PMCID: PMC8229913 DOI: 10.3390/nano11061420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 11/24/2022]
Abstract
Facing the increasing demand for various renewable energy storage devices and wearable and portable energy storage systems, the research on electrode materials with low costs and high energy densities has attracted great attention. Herein, free-standing rGO-CNT nanocomposites have been successfully synthesized by a facile hydrothermal method, in which the hierarchical porous network nanostructure is synergistically assembled by rGO nanosheets and CNT with interlaced network distribution. The rGO-CNT composite electrodes with synergistic enhancement of rGO and CNT exhibit high specific capacitance, excellent rate capability, exceptional conductivity and outstanding long-term cycling stability, especially for the optimal rGO-CNT30 electrode. Applied to a symmetric supercapacitor systems (SSS) assembled with an rGO-CNT30 electrode and with 1 M Na2SO4 aqueous solution as the electrolyte, the SSS possesses a high energy density of 12.29 W h kg−1 and an outstanding cycling stability, with 91.42% of initial specific capacitance after 18,000 cycles. Results from these electrochemical properties suggest that the rGO-CNT30 nanocomposite electrode is a promising candidate for the development of flexible and lightweight high-performance supercapacitors.
Collapse
Affiliation(s)
- Xiaohan Du
- School of Physics & Electronic Engineering, North China University of Water Resources & Electric Power, Zhengzhou 450045, China; (X.D.); (Z.Q.)
| | - Zhen Qin
- School of Physics & Electronic Engineering, North China University of Water Resources & Electric Power, Zhengzhou 450045, China; (X.D.); (Z.Q.)
| | - Zijiong Li
- School of Physics & Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Correspondence:
| |
Collapse
|
6
|
Zhang B, Yu C, Li Z. Enhancing the Electrochemical Properties of LaCoO 3 by Sr-Doping, rGO-Compounding with Rational Design for Energy Storage Device. NANOSCALE RESEARCH LETTERS 2020; 15:184. [PMID: 32970256 PMCID: PMC7515996 DOI: 10.1186/s11671-020-03411-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Perovskite oxides, as a kind of functional materials, have been widely studied in recent years due to its unique physical, chemical, and electrical properties. Here, we successfully prepared perovskite-type LaCoO3 (LCOs) nanomaterials via an improved sol-gel method followed by calcination, and investigated the influence of calcination temperature and time on the morphology, structure, and electrochemical properties of LaCoO3 nanomaterials. Then, based on the optimal electrochemical performance of LCO-700-4 electrode sample, the newly synthesized nanocomposites of Sr-doping (LSCO-0.2) and rGO-compounding (rGO@LCO) through rational design exhibited a 1.45-fold and 2.03-fold enhancement in its specific capacitance (specific capacity). The rGO@LCO electrode with better electrochemical performances was further explored by assembling rGO@LCO//rGO asymmetric supercapacitor system (ASS) with aqueous electrolyte. The result showed that the ASS delivers a high energy density of 17.62 W h kg-1 and an excellent cyclic stability with 94.48% of initial capacitance after 10,000 cycles, which are good electrochemical performances among aqueous electrolytes for green and new efficient energy storage devices.
Collapse
Affiliation(s)
- Bin Zhang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Chuanfu Yu
- Henan Aerospace Hydraulic & Pneumatic Technology Co., Ltd., Zhengzhou, 450011, China
| | - Zijiong Li
- School of Physics & Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| |
Collapse
|