1
|
Bhandari G, Dhakal PP, Tran DT, Nguyen TH, Dinh VA, Kim NH, Lee JH. Pt Single Atom-Doped Triphasic VP-Ni 3P-MoP Heterostructure: Unveiling a Breakthrough Electrocatalyst for Efficient Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405952. [PMID: 39377360 DOI: 10.1002/smll.202405952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/28/2024] [Indexed: 10/09/2024]
Abstract
Enhancement of an alkaline water splitting reaction in Pt-based single-atom catalysts (SACs) relies on effective metal-support interactions. A Pt single atom (PtSA)-immobilized three-phased PtSA@VP-Ni3P-MoP heterostructure on nickel foam is presented, demonstrating high catalytic performance. The existence of PtSA on triphasic metal phosphides gives an outstanding performance toward overall water splitting. The PtSA@VP-Ni3P-MoP performs a low overpotential of 28 and 261 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at a current density of 10 and 25 mA cm-2, respectively. The PtSA@VP-Ni3P-MoP (+,-) alkaline electrolyzer achieves a minimum cell voltage of 1.48 V at a current density of 10 mA cm-2 for overall water splitting. Additionally, the electrocatalyst exhibits a substantial Faradaic yield of ≈98.12% for H2 and 98.47% for O2 at a current density of 50 mA cm-2. Consequently, this study establishes a connection for understanding the active role of single metal atoms in substrate configuration for catalytic performance. It also facilitates the successful synthesis of SACs, with a substantial loading on transition metal phosphides and maximal atomic utilization, providing more active sites and, thereby enhancing electrocatalytic activity.
Collapse
Affiliation(s)
- Ganesh Bhandari
- Department of Nano Convergence Engineering (BK21 Four), Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Purna Prasad Dhakal
- Department of Nano Convergence Engineering (BK21 Four), Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Duy Thanh Tran
- Department of Nano Convergence Engineering (BK21 Four), Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Thanh Hai Nguyen
- Department of Nano Convergence Engineering (BK21 Four), Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Van An Dinh
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Nam Hoon Kim
- Department of Nano Convergence Engineering (BK21 Four), Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Joong Hee Lee
- Department of Nano Convergence Engineering (BK21 Four), Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
- Center for Carbon Composite Materials, Department of Polymer & Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| |
Collapse
|
2
|
Song S, Wang Y, Liu Y, Tian P, Zang J. Heterogeneous Ni-Boride/Phosphide Anchored Amorphous B-C Layer for Overall Water Electrocatalysis. CHEMSUSCHEM 2024; 17:e202301547. [PMID: 38711383 DOI: 10.1002/cssc.202301547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/21/2024] [Indexed: 05/08/2024]
Abstract
The rational design of efficient and economical bifunctional electrocatalysts remained a challenge for overall water electrolysis. In this work, the Ni-boride/ phosphide particles anchored amorphous B-doped carbon layer with hierarchical porous characteristics in Ni foam (Ni3P/Ni3B/B-C/NF) was fabricated for overall water splitting. The Boroncarbide (B4C) power was filled and fixed in the NF interspace through the electroplating and electroless plating, and then annealed in vacuum high temperature. The amorphous B-C layer derived from the B4 C not only speeded up the electron transport, but also cooperate with Ni-boride/phosphide to enhance the electrocatalytic activity for HER and OER synergistically. Furthermore, the hierarchical porous architecture of Ni3P/Ni3B/B-C/NF increased space utilization to load more active materials. The self-supported Ni3P/Ni3B/B-C/NF electrode possessed a low overpotential of 212 and 280 mV to deliver 100 mA cm-2 for HER and OER, respectively, and high stability for 48 h. In particular, the electrolyzer constituted with the Ni3P/Ni3B/B-C/NF bifunctional electrocatalyst only required a voltage of 1.59 V at 50 mA cm-2 for water electrocatalysis under alkaline medium, and demonstrated long-term stability for 48 h. This study provides a new technical path for the development of bifunctional of transition metal borides to promote the application of hydrogen production from water splitting.
Collapse
Affiliation(s)
- Shiwei Song
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, No. 438 West Hebei Avenue, Qinhuangdao, Hebei, 066004, P. R. China
- School of Materials Science and Engineering, Linyi University, West side of the north section of Industrial Avenue, Linyi, Shandong, 276000, P. R. China
| | - Yanhui Wang
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, No. 438 West Hebei Avenue, Qinhuangdao, Hebei, 066004, P. R. China
| | - Yucan Liu
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, No. 438 West Hebei Avenue, Qinhuangdao, Hebei, 066004, P. R. China
| | - Pengfei Tian
- School of Materials Science and Engineering, Linyi University, West side of the north section of Industrial Avenue, Linyi, Shandong, 276000, P. R. China
| | - Jianbing Zang
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, No. 438 West Hebei Avenue, Qinhuangdao, Hebei, 066004, P. R. China
| |
Collapse
|
3
|
Lakhan MN, Hanan A, Wang Y, Liu S, Arandiyan H. Recent Progress on Nickel- and Iron-Based Metallic Organic Frameworks for Oxygen Evolution Reaction: A Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2465-2486. [PMID: 38265034 DOI: 10.1021/acs.langmuir.3c03558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Developing sustainable energy solutions to safeguard the environment is a critical ongoing demand. Electrochemical water splitting (EWS) is a green approach to create effective and long-lasting electrocatalysts for the water oxidation process. Metal organic frameworks (MOFs) have become commonly utilized materials in recent years because of their distinguishing pore architectures, metal nodes easy accessibility, large specific surface areas, shape, and adaptable function. This review outlines the most significant developments in current work on developing improved MOFs for enhancing EWS. The benefits and drawbacks of MOFs are first discussed in this review. Then, some cutting-edge methods for successfully modifying MOFs are also highlighted. Recent progress on nickel (Ni) and iron (Fe) based MOFs have been critically discussed. Finally, a comprehensive analysis of the existing challenges and prospects for Ni- and Fe-based MOFs are summarized.
Collapse
Affiliation(s)
- Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Abdul Hanan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor 47500, Malaysia
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Shaomin Liu
- School of Advanced Engineering, Great Bay University, Dongguan 523000, China
| | - Hamidreza Arandiyan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
4
|
Zuo P, Ji X, Lu J, Chai Y, Jiao W, Wang R. N, P co-doped Ni/Mo-based multicomponent electrocatalysts in situ decorated on Ni foam for overall water splitting. J Colloid Interface Sci 2023; 645:895-905. [PMID: 37178566 DOI: 10.1016/j.jcis.2023.04.166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
Developing the robust non-precious metal bifunctional electrocatalyst is highly imperative for the hydrogen evolution from overall water splitting. Herein, a Ni foam (NF)-supported ternary Ni/Mo bimetallic complex (Ni/Mo-TEC@NF), hierarchically constructed by coupling the in-situ formed MoNi4 alloys and Ni2Mo3O8 with Ni3Mo3C on NF, has been developed through a facile method involving the in-situ hydrothermal growth of the Ni-Mo oxides/polydopamine (NiMoOx/PDA) complex on NF and a subsequent annealing in a reduction atmosphere. Synchronously, N and P atoms are co-doped into Ni/Mo-TEC during the annealing procedure using phosphomolybdic acid and PDA raw materials as P and N sources, respectively. The resultant N, P-Ni/Mo-TEC@NF shows outstanding electrocatalytic activities and tremendous stability for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), due to the multiple heterojunction effect-promoted electron transfer, the large number of exposed active sites, and the modulated electronic structure by the N and P co-doping. It only needs a low overpotential of 22 mV to afford the current density of 10 mA·cm-2 for HER in alkaline electrolyte. More importantly, as the anode and cathode, it requires only 1.59 and 1.65 V to achieve 50 and 100 mA·cm-2 for overall water splitting, respectively, comparable to the benchmark Pt/C@NF//RuO2@NF couple. This work could spur the search for economical and efficient electrodes by in situ constructing multiple bimetallic components on 3D conductive substrates for practical hydrogen generation.
Collapse
Affiliation(s)
- Peng Zuo
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Xujing Ji
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Jiawei Lu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Yating Chai
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Weizhou Jiao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China.
| | - Ruixin Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China.
| |
Collapse
|
5
|
Song S, Wang Y, Tian X, Sun F, Liu X, Yuan Y, Li W, Zang J. S-modified NiFe-phosphate hierarchical hollow microspheres for efficient industrial-level seawater electrolysis. J Colloid Interface Sci 2023; 633:668-678. [PMID: 36473357 DOI: 10.1016/j.jcis.2022.11.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
For sustained hydrogen generation from seawater electrolysis, an efficient and specialized catalyst must be designed to cope with the slow anode reaction and chloride ions (Cl-) corrosion. In this work, an S-modified NiFe-phosphate with hierarchical and hollow microspheres was grown on the NiFe foam skeleton (S-NiFe-Pi/NFF), acting as a bifunctional catalyst to enable industrial-scale seawater electrolysis. The introduction of S distorted the lattice of NiFe-phosphate and regulated the local electronic environment around Ni/Fe active metal, both of which enhanced the electrocatalytic activity. Additionally, the existence of phosphate groups repelled Cl- on the surface and enhanced corrosion resistance, enabling stable long-term operation in seawater. The double-electrode electrolyzer composed of the hollow-structured S-NiFe-Pi/NFF as both cathode and anode exhibited a potential of 1.68 V at 100 mA cm-2 for seawater electrolysis. Particularly, to achieve industrial requirements of 500 mA cm-2, it only required a low cell voltage of 1.8 V and demonstrated a consistent response over 100 h, which outperformed the pair of Pt/C || IrO2. This study provides a feasible idea for the preparation of electrocatalysts that are with both highly activity and corrosion resistance, which is crucial for the implementation of industrial-scale seawater electrolysis.
Collapse
Affiliation(s)
- Shiwei Song
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Yanhui Wang
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Xueqing Tian
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Fanjia Sun
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Xiaoxu Liu
- Department of Physics, Hebei Normal University of Science and Technology, Qinhuangdao 066004, PR China
| | - Yungang Yuan
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Wei Li
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Jianbing Zang
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| |
Collapse
|
6
|
Ultrafine cobalt molybdenum phosphide nanoparticles embedded in crosslinked nitrogen-doped carbon nanofiber as efficient bifunctional catalyst for overall water splitting. J Colloid Interface Sci 2022; 625:956-964. [DOI: 10.1016/j.jcis.2022.06.093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022]
|
7
|
Kong Y, Xiong D, Lu C, Wang J, Liu T, Ying S, Ma X, Yi FY. Vanadium-Based Trimetallic Metal-Organic-Framework Family as Extremely High-Performing and Ultrastable Electrocatalysts for Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37804-37813. [PMID: 35944544 DOI: 10.1021/acsami.2c09998] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This is the first time that the pore-space-partition (PSP) strategy is being successfully applied in the electrochemical field for water splitting, realizing the highly efficient construction of a series of ultrastable pristine MOF electrocatalysts. On integrating the vanadium-based trimetallic building cluster (M2V), the target M2V-MOFs exhibit excellent electrocatalytic activity for HER, OER, and water splitting. In particular, ultralow overpotentials of 314 and 198 mV for Fe2V-MOF as OER and HER electrocatalysts, respectively, can drive a current density of 10 mA cm-2. The fabricated Fe2V-MOF||Pt/C two-electrode configuration for the overall water splitting yields a current density of 10 mA cm-2 at only 1.6 V vs RHE, which is superior to that of the commercial IrO2||Pt/C couple. Notably, high structural and chemical stabilities still can be observed in alkaline condition. This work opens up an exciting pathway to design efficient and stable electrocatalysts based on pristine MOF by integrating the PSP strategy and multimetallic centers.
Collapse
Affiliation(s)
- Yuxuan Kong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Dengke Xiong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Chunxiao Lu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Jiang Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Tian Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Shuanglu Ying
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Xinghua Ma
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Fei-Yan Yi
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
8
|
Preparation of NiFeCr-based trimetal organic frameworks as electrocatalyst for direct use in oxygen evolution reaction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Najafi L, Oropesa-Nuñez R, Bellani S, Martín-García B, Pasquale L, Serri M, Drago F, Luxa J, Sofer Z, Sedmidubský D, Brescia R, Lauciello S, Zappia MI, Shinde DV, Manna L, Bonaccorso F. Topochemical Transformation of Two-Dimensional VSe 2 into Metallic Nonlayered VO 2 for Water Splitting Reactions in Acidic and Alkaline Media. ACS NANO 2022; 16:351-367. [PMID: 34939404 DOI: 10.1021/acsnano.1c06662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The engineering of the structural and morphological properties of nanomaterials is a fundamental aspect to attain desired performance in energy storage/conversion systems and multifunctional composites. We report the synthesis of room temperature-stable metallic rutile VO2 (VO2 (R)) nanosheets by topochemically transforming liquid-phase exfoliated VSe2 in a reductive Ar-H2 atmosphere. The as-produced VO2 (R) represents an example of two-dimensional (2D) nonlayered materials, whose bulk counterparts do not have a layered structure composed by layers held together by van der Waals force or electrostatic forces between charged layers and counterbalancing ions amid them. By pretreating the VSe2 nanosheets by O2 plasma, the resulting 2D VO2 (R) nanosheets exhibit a porous morphology that increases the material specific surface area while introducing defective sites. The as-synthesized porous (holey)-VO2 (R) nanosheets are investigated as metallic catalysts for the water splitting reactions in both acidic and alkaline media, reaching a maximum mass activity of 972.3 A g-1 at -0.300 V vs RHE for the hydrogen evolution reaction (HER) in 0.5 M H2SO4 (faradaic efficiency = 100%, overpotential for the HER at 10 mA cm-2 = 0.184 V) and a mass activity (calculated for a non 100% faradaic efficiency) of 745.9 A g-1 at +1.580 V vs RHE for the oxygen evolution reaction (OER) in 1 M KOH (overpotential for the OER at 10 mA cm-2 = 0.209 V). By demonstrating proof-of-concept electrolyzers, our results show the possibility to synthesize special material phases through topochemical conversion of 2D materials for advanced energy-related applications.
Collapse
Affiliation(s)
- Leyla Najafi
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Reinier Oropesa-Nuñez
- Department of Material Science and Engineering, Uppsala University, Box 35, 75103 Uppsala, Sweden
| | - Sebastiano Bellani
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Lea Pasquale
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Michele Serri
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Filippo Drago
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Jan Luxa
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - David Sedmidubský
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Rosaria Brescia
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Simone Lauciello
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Marilena I Zappia
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy
| | - Dipak V Shinde
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Liberato Manna
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Francesco Bonaccorso
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
10
|
Kim H, Prasad Tiwari A, Mukhiya T, Kim HY. Temperature-controlled in situ synthesized carbon nanotube-protected vanadium phosphate particle-anchored electrospun carbon nanofibers for high energy density symmetric supercapacitors. J Colloid Interface Sci 2021; 600:740-751. [DOI: 10.1016/j.jcis.2021.05.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 01/06/2023]
|
11
|
Xu S, Yu X, Liu X, Teng C, Du Y, Wu Q. Contrallable synthesis of peony-like porous Mn-CoP nanorod electrocatalyst for highly efficient hydrogen evolution in acid and alkaline. J Colloid Interface Sci 2020; 577:379-387. [DOI: 10.1016/j.jcis.2020.05.097] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 01/22/2023]
|
12
|
Fonseca J, Choi S. Electro- and photoelectro-catalysts derived from bimetallic amorphous metal–organic frameworks. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01600d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is developed a synthesis method for the design of new bimetallic amorphous MOFs. Such frameworks serve as precursors to prepare high-performance electro- and photoelectro-catalysts for ORR, OER and HER in both acidic and alkaline media.
Collapse
Affiliation(s)
- Javier Fonseca
- Nanomaterial Laboratory for Catalysis and Advanced Separations
- Department of Chemical Engineering
- 313 Snell Engineering Center
- Northeastern University
- Boston
| | - Sunho Choi
- Nanomaterial Laboratory for Catalysis and Advanced Separations
- Department of Chemical Engineering
- 313 Snell Engineering Center
- Northeastern University
- Boston
| |
Collapse
|