1
|
Shaheen Shah S, Oladepo S, Ali Ehsan M, Iali W, Alenaizan A, Nahid Siddiqui M, Oyama M, Al-Betar AR, Aziz MA. Recent Progress in Polyaniline and its Composites for Supercapacitors. CHEM REC 2024; 24:e202300105. [PMID: 37222655 DOI: 10.1002/tcr.202300105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/10/2023] [Indexed: 05/25/2023]
Abstract
Polyaniline (PANI) has piqued the interest of nanotechnology researchers due to its potential as an electrode material for supercapacitors. Despite its ease of synthesis and ability to be doped with a wide range of materials, PANI's poor mechanical properties have limited its use in practical applications. To address this issue, researchers investigated using PANI composites with materials with highly specific surface areas, active sites, porous architectures, and high conductivity. The resulting composite materials have improved energy storage performance, making them promising electrode materials for supercapacitors. Here, we provide an overview of recent developments in PANI-based supercapacitors, focusing on using electrochemically active carbon and redox-active materials as composites. We discuss challenges and opportunities of synthesizing PANI-based composites for supercapacitor applications. Furthermore, we provide theoretical insights into the electrical properties of PANI composites and their potential as active electrode materials. The need for this review stems from the growing interest in PANI-based composites to improve supercapacitor performance. By examining recent progress in this field, we provide a comprehensive overview of the current state-of-the-art and potential of PANI-based composites for supercapacitor applications. This review adds value by highlighting challenges and opportunities associated with synthesizing and utilizing PANI-based composites, thereby guiding future research directions.
Collapse
Affiliation(s)
- Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - Sulayman Oladepo
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Ali Ehsan
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Wissam Iali
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Asem Alenaizan
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammad Nahid Siddiqui
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Munetaka Oyama
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - Abdul-Rahman Al-Betar
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
- K.A. CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
2
|
Jiang K, Gao M, Dou Z, Wang K, Yu H, Ning L, Yang Y, Lv R, Fu M. High mass loading and additive-free prussian blue analogue based flexible electrodes for Na-ion supercapacitors. J Colloid Interface Sci 2023; 650:490-497. [PMID: 37421751 DOI: 10.1016/j.jcis.2023.06.204] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/24/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
Supercapacitor electrodes often suffer from the low mass loading of active substances and the unsatisfactory ion/charge transport features due to the use of various additives. Exploring high mass loading and additive-free electrodes is of huge significance to develop advanced supercapacitors with commercial application prospects, which still remains challenging. Herein, high mass loading CoFe-prussian blue analogue (CoFe-PBA) electrodes are developed by a facile co-precipitation method using activated carbon cloth (ACC) as the flexible substrate. The homogeneous nanocube structure, large specific surface area (143.9 m2 g-1) and appropriate pore size distribution (3.4 nm) of the CoFe-PBA endow the as-prepared CoFe-PBA/ACC electrodes with low resistance and appealing ion diffusion characteristics. Typically, the high areal capacitance (1155.0 mF cm-2 at 0.5 mA cm-2) is obtained for high mass loading CoFe-PBA/ACC electrodes (9.7 mg cm-2). Furthermore, symmetrical flexible supercapacitors (FSCs) are constructed using CoFe-PBA/ACC electrodes and Na2SO4/polyving alcohol (Na2SO4/PVA) gel electrolyte, achieving superior stability (85.6% capacitance retention after 5,000 cycles), maximum energy density of 33.8 μWh cm-2 at 200.0 μW cm-2 and promising mechanical flexibility. This work is expected to offer inspirations for the development of high mass loading and additive-free electrodes for FSCs.
Collapse
Affiliation(s)
- Kun Jiang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Meng Gao
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhixin Dou
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Kunhua Wang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hao Yu
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Liangmin Ning
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanru Yang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Ruitao Lv
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Min Fu
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
3
|
Wei Z, Zhang Y, Cai C, Qu H, Fu Y, Tan SC. Wood Lamella-Inspired Photothermal Stearic Acid-Eutectic Gallium-Indium-Based Phase Change Aerogel for Thermal Management and Infrared Stealth. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302886. [PMID: 37485809 DOI: 10.1002/smll.202302886] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Indexed: 07/25/2023]
Abstract
Eutectic Gallium-Indium (EGaIn) liquid metal is an emerging phase change metal material, but its low phase transition enthalpy and low light absorption limit its application in photothermal phase change energy storage materials (PCMs) field. Here, based on the dipole layer mechanism, stearic acid (STA)-EGaIn-based PCMs which exhibit extraordinary solar-thermal performance and phase change enthalpy are fabricated by ball milling method. The wood lamella-inspired cellulose-derived aerogel and molybdenum disulfide (MoS2 ) are used to support the PCMs by the capillary force and decrease the interfacial thermal resistance. The resulted PCMs achieved excellent photothermal conversion performance and leakage proof. They have excellent thermal conductivity of 0.31 W m-1 K-1 (this is increased by 138% as compared with pure STA), and high phase change enthalpy of187.50 J g-1 , which is higher than the most of the reported PCMs. Additionally, the thermal management system and infrared stealth materials based on the PCMs are developed. This work provides a new way to fabricate smart EGaIn-based PCMs for energy storage device thermal management and infrared stealth.
Collapse
Affiliation(s)
- Zechang Wei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yaoxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, Shanghai, 201306, China
| | - Chenyang Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Hao Qu
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Yu Fu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| |
Collapse
|
4
|
Hong JL, Liu JH, Xiong X, Qin SY, Xu XY, Meng X, Gu K, Tang J, Chen DZ. Temperature-dependent pseudocapacitive behaviors of polyaniline-based all-solid-state fiber supercapacitors. Electrochem commun 2023. [DOI: 10.1016/j.elecom.2023.107456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
5
|
Hu Y, Chen H, Liu M, Tang Q, Huang Y, Shen G, Zhang Y, Liu C, Huang Z, Gu K, Chen DZ. Insight into thermal regulation of supercapacitors via surface-engineered phase change microcapsules. J Colloid Interface Sci 2023; 630:150-160. [DOI: 10.1016/j.jcis.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
|
6
|
Parsimehr H, Ehsani A. Stimuli-Responsive Electrochemical Energy Storage Devices. CHEM REC 2022; 22:e202200075. [PMID: 35832003 DOI: 10.1002/tcr.202200075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/24/2022] [Indexed: 11/11/2022]
Abstract
Electrochemical energy storage (EES) devices have been swiftly developed in recent years. Stimuli-responsive EES devices that respond to different external stimuli are considered the most advanced EES devices. The stimuli-responsive EES devices enhanced the performance and applications of the EES devices. The capability of the EES devices to respond to the various external stimuli due to produced advanced EES devices that distinguished the best performance and interactions in different situations. The stimuli-responsive EES devices have responsive behavior to different external stimuli including chemical compounds, electricity, photons, mechanical tensions, and temperature. All of these advanced responsiveness behaviors have originated from the functionality and specific structure of the EES devices. The multi-responsive EES devices have been recognized as the next generation of stimuli-responsive EES devices. There are two main steps in developing stimuli-responsive EES devices in the future. The first step is the combination of the economical, environmental, electrochemical, and multi-responsiveness priorities in an EES device. The second step is obtaining some advanced properties such as biocompatibility, flexibility, stretchability, transparency, and wearability in novel stimuli-responsive EES devices. Future studies on stimuli-responsive EES devices will be allocated to merging these significant two steps to improve the performance of the stimuli-responsive EES devices to challenge complicated situations.
Collapse
Affiliation(s)
- Hamidreza Parsimehr
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Ali Ehsani
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| |
Collapse
|
7
|
Zuo W, Zang L, Liu Q, Qiu J, Lan M, Yang C. A quasi-solid-state supercapacitor based on waste surgical masks with high flexibility and designable shape. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Li J, Yu J, Sun Z, Liu H, Wang X. Innovative Integration of Phase-Change Microcapsules with Metal-Organic Frameworks into an Intelligent Biosensing System for Enhancing Dopamine Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41753-41772. [PMID: 34459189 DOI: 10.1021/acsami.1c13446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This work focuses on an interdisciplinary issue in energy management and biosensing techniques. Aiming at enhancing the biosensing detection of dopamine at high ambient temperatures, we developed an innovative integration of phase-change microcapsules with a metal-organic framework (MOF) based on zeolitic imidazolate framework-8 to develop an intelligent electrochemical biosensing system with a thermal self-regulation function. We first fabricated a type of electroactive microcapsules containing a MOF-anchored polypyrrole/SiO2 double-layered shell and a phase-change material (PCM) core. The resultant microcapsules not only exhibit a regular spherical morphology with a layer-by-layer core-shell microstructure but also display an effective temperature-regulation capability to enhance enzymatic bioactivity under phase-change enthalpies of around 124.0 J·g-1 along with good thermal impact resistance and excellent thermal cycling stability for long-term use in thermal energy management. These electroactive microcapsules were then used to modify a working electrode together with laccase as a biocatalyst to construct a thermal self-regulatory biosensor. With a high sensitivity of 3.541 μA·L·μmol-1·cm-2 and a low detection limit of 0.0069 μmol·L-1 at 50 °C, this biosensor exhibits much better determination effectiveness toward dopamine at higher temperatures than conventional biosensors thanks to in situ thermal management derived from its PCM core in the electroactive microcapsules. This study offers a promising approach for development of intelligent thermal self-regulatory biosensors with an enhanced detection capability to identify various chemicals accurately in a wide range of applicable temperatures.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jinghua Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhao Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Huan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiaodong Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
9
|
Liu JH, Xu XY, Liu C, Chen DZ. Thermal effect on the pseudocapacitive behavior of high-performance flexible supercapacitors based on polypyrrole-decorated carbon cloth electrodes. NEW J CHEM 2021. [DOI: 10.1039/d1nj01513c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The electrochemical performance of flexible CC/PPy supercapacitors was systematically investigated at various surrounding temperatures.
Collapse
Affiliation(s)
- Jia-hua Liu
- Department of Materials Science and Engineering
- City University of Hong Kong
- Kowloon
- P. R. China
- Shenzhen Key Laboratory of Polymer Science and Technology
| | - Xiao-ying Xu
- Shenzhen Key Laboratory of Polymer Science and Technology
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen 518055
- P. R. China
| | - Chen Liu
- Shenzhen Key Laboratory of Polymer Science and Technology
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen 518055
- P. R. China
| | - Da-Zhu Chen
- Shenzhen Key Laboratory of Polymer Science and Technology
- College of Materials Science and Engineering
- Shenzhen University
- Shenzhen 518055
- P. R. China
| |
Collapse
|