1
|
Xu Q, Su K, Chen J, Zhong Y, Zhao Y, Sun M, Yu L. Bismuth oxycarbonates loaded on nitrogen-doped carbon: an efficient nanocomposite catalyst for electrochemical reduction of CO 2 to formate. NANOSCALE 2025; 17:9588-9598. [PMID: 40131249 DOI: 10.1039/d4nr05343e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The consumption of fossil fuels has led to a significant increase in CO2 in the atmosphere, resulting in the greenhouse effect and placing tremendous pressure on the global environment. The electrocatalytic reduction of CO2 to produce the high-value chemical formic acid or formate is an efficient and environmentally friendly method with significant practical implications for achieving carbon neutrality. This study presents a nanocomposite catalyst of bismuth oxycarbonate loaded on nitrogen-doped carbon materials (BOC-NC), prepared using a hydrothermal method. In an H-type electrolytic cell, the BOC-NC-900 °C catalyst exhibited excellent electrochemical CO2 reduction (CO2RR) performance, achieving a faradaic efficiency of 94.9% for formate production and maintaining catalytic stability over 38 h of the CO2RR at -1.0 V vs. RHE, while in a flow-cell configuration, it achieved a current density of 91 mA cm-2, a faradaic efficiency of 90.5% for the formate, and sustained stability over 10 hours at -1.0 V vs. RHE. The synergistic effect generated between BOC and NC enhances the formate selectivity, providing valuable insights for developing composite materials that integrate bismuth-based catalysts with carbon matrices.
Collapse
Affiliation(s)
- Qingqing Xu
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006 Guangzhou, P. R. China.
| | - Kaixuan Su
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006 Guangzhou, P. R. China.
| | - Jiayong Chen
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006 Guangzhou, P. R. China.
| | - Yuanhong Zhong
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006 Guangzhou, P. R. China.
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, P. R. China
| | - Yingxia Zhao
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006 Guangzhou, P. R. China.
| | - Ming Sun
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006 Guangzhou, P. R. China.
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, P. R. China
| | - Lin Yu
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006 Guangzhou, P. R. China.
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, P. R. China
| |
Collapse
|
2
|
Xu Y, Guo Y, Sheng Y, Yu H, Deng K, Wang Z, Li X, Wang H, Wang L. Selective CO 2 Electroreduction to Formate on Polypyrrole-Modified Oxygen Vacancy-Rich Bi 2 O 3 Nanosheet Precatalysts by Local Microenvironment Modulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300001. [PMID: 37058094 DOI: 10.1002/smll.202300001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Challenges remain in the development of highly efficient catalysts for selective electrochemical transformation of carbon dioxide (CO2 ) to high-valued hydrocarbons. In this study, oxygen vacancy-rich Bi2 O3 nanosheets coated with polypyrrole (Bi2 O3 @PPy NSs) are designed and synthesized, as precatalysts for selective electrocatalytic CO2 reduction to formate. Systematic material characterization demonstrated that Bi2 O3 @PPy precatalyst can evolve intoBi2 O2 CO3 @PPy nanosheets with rich oxygen vacancies (Bi2 O2 CO3 @PPy NSs) via electrolyte-mediated conversion and function as the real active catalyst for CO2 reduction reaction electrocatalysis. Coating catalyst with a PPy shell can modulate the interfacial microenvironment of active sites, which work in coordination with rich oxygen vacancies in Bi2 O2 CO3 and efficiently mediate directional selective CO2 reduction toward formate formation. With the fine-tuning of interfacial microenvironment, the optimized Bi2 O3 @PPy-2 NSs derived Bi2 O2 CO3 @PPy-2 NSs exhibit a maximum Faradaic efficiency of 95.8% at -0.8 V (versus. reversible hydrogen electrode) for formate production. This work might shed some light on designing advanced catalysts toward selective electrocatalytic CO2 reduction through local microenvironment engineering.
Collapse
Affiliation(s)
- You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yiyi Guo
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Youwei Sheng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
3
|
Zhang B, Wu Y, Zhai P, Wang C, Sun L, Hou J. Rational design of bismuth-based catalysts for electrochemical CO2 reduction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64132-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Enhanced Electrocatalytic CO2 Reduction of Bismuth Nanosheets with Introducing Surface Bismuth Subcarbonate. COATINGS 2022. [DOI: 10.3390/coatings12020233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) into hydrocarbon products is one of the most promising approaches for CO2 utilization in modern society. However, the application of CO2RR requires optimizing state-of-the-art catalysts as well as elucidating the catalytic interface formation mechanism. In this study, a flower-like nano-structured Bi catalyst is prepared by a facile pulse current electrodeposition method wherein the morphologies could be accurately controlled. Interestingly, nano-structured Bi is inclined to generate Bi2O2CO3 in the air and form a stable Bi2O2CO3@Bi interface, which could enhance the CO2 adsorption and conversion. In-situ Raman spectroscopy analysis also proves the existence of Bi2O2CO3 on the electrode surface. In a practical CO2 reduction test by a flow-cell reactor, the Bi2O2CO3@Bi electrode delivers a high faradaic efficiency of the CO2 to formate/formic acid (~90%) at −1.07 V vs. reversible hydrogen electrode (RHE) with no obvious decay during more than a 10 h continuous test. The introducing surface Bi2O2CO3 in nano-structured Bi supports a promising strategy as well as facile access to prepare improved CO2RR electrocatalysts.
Collapse
|
5
|
Najam T, Ahmad Khan N, Ahmad Shah SS, Ahmad K, Sufyan Javed M, Suleman S, Sohail Bashir M, Hasnat MA, Rahman MM. Metal-Organic Frameworks Derived Electrocatalysts for Oxygen and Carbon Dioxide Reduction Reaction. CHEM REC 2022; 22:e202100329. [PMID: 35119193 DOI: 10.1002/tcr.202100329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/22/2022] [Indexed: 12/26/2022]
Abstract
The increasing demands of energy and environmental concerns have motivated researchers to cultivate renewable energy resources for replacing conventional fossil fuels. The modern energy conversion and storage devices required high efficient and stable electrocatalysts to fulfil the market demands. In previous years, we are witness for considerable developments of scientific attention in Metal-organic Frameworks (MOFs) and their derived nanomaterials in electrocatalysis. In current review article, we have discussed the progress of optimistic strategies and approaches for the manufacturing of MOF-derived functional materials and their presentation as electrocatalysts for significant energy related reactions. MOFs functioning as a self-sacrificing template bid different benefits for the preparation of metal nanostructures, metal oxides and carbon-abundant materials promoting through the porous structure, organic functionalities, abundance of metal sites and large surface area. Thorough study for the recent advancement in the MOF-derived materials, metal-coordinated N-doped carbons with single-atom active sites are emerging candidates for future commercial applications. However, there are some tasks that should be addressed, to attain improved, appreciative and controlled structural parameters for catalytic and chemical behavior.
Collapse
Affiliation(s)
- Tayyaba Najam
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Naseem Ahmad Khan
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Syed Shoaib Ahmad Shah
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.,Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Khalil Ahmad
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Suleman Suleman
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Muhammad Sohail Bashir
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Mohammad A Hasnat
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3100, Bangladesh
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Wang X, Wang Z, Jin X. Nanoporous bismuth for the electrocatalytic reduction of CO 2 to formate. Phys Chem Chem Phys 2021; 23:19195-19201. [PMID: 34524291 DOI: 10.1039/d1cp02661e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bi is an attractive catalyst towards the electrochemical reduction of CO2 to formate. In this work, nanoporous bismuth was prepared by dealloying Mg3Bi2 with tartaric acid (TA) solution, and the size of the primary Bi nanoparticles was adjusted according to the concentration of TA. When the concentration of TA increased from 2 wt% to 20 wt%, the particle size of Bi increased from about 70 nm to 400 nm. The synthesized nanoporous Bi samples were investigated as electrocatalysts for the reduction of CO2 in KHCO3 electrolyte, and it was found that the smaller the particle size, the higher the catalytic activity. However, nanoporous Bi comprising 70 nm particles suffered from mass transfer difficulty and sintering during the reaction, whereas the 100 nm nanoporous Bi delivered both a high formate formation current and faradaic efficiency (FE) (16 mA cm-2, FE > 90% at -0.88 V vs. RHE) and showed excellent durability.
Collapse
Affiliation(s)
- Xiaoyan Wang
- College of Chemistry and Molecular Sciences, Hubei key laboratory of Electrochemical powder sources, Wuhan university, Wuhan, 430072, P. R. China.
| | - Zhiyong Wang
- College of Chemistry and Molecular Sciences, Hubei key laboratory of Electrochemical powder sources, Wuhan university, Wuhan, 430072, P. R. China.
| | - Xianbo Jin
- College of Chemistry and Molecular Sciences, Hubei key laboratory of Electrochemical powder sources, Wuhan university, Wuhan, 430072, P. R. China. .,Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan, China
| |
Collapse
|
7
|
Duarte M, Daems N, Hereijgers J, Arenas-Esteban D, Bals S, Breugelmans T. Enhanced CO2 electroreduction with metal-nitrogen-doped carbons in a continuous flow reactor. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Al‐Tamreh SA, Ibrahim MH, El‐Naas MH, Vaes J, Pant D, Benamor A, Amhamed A. Electroreduction of Carbon Dioxide into Formate: A Comprehensive Review. ChemElectroChem 2021. [DOI: 10.1002/celc.202100438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shaima A. Al‐Tamreh
- Gas Processing Center College of Engineering Qatar University Doha, Ad Dawhah 2713 Qatar
| | - Mohamed H. Ibrahim
- Gas Processing Center College of Engineering Qatar University Doha, Ad Dawhah 2713 Qatar
| | - Muftah H. El‐Naas
- Gas Processing Center College of Engineering Qatar University Doha, Ad Dawhah 2713 Qatar
| | - Jan Vaes
- Separation & Conversion Technology Flemish Institute for Technological Research (VITO) Boeretang 200 2400 Mol Belgium
| | - Deepak Pant
- Separation & Conversion Technology Flemish Institute for Technological Research (VITO) Boeretang 200 2400 Mol Belgium
| | - Abdelbaki Benamor
- Gas Processing Center College of Engineering Qatar University Doha, Ad Dawhah 2713 Qatar
| | - Abdulkarem Amhamed
- Qatar Environment & Energy Research Institute Hamad Bin Khalifa University Education City Doha Qatar
| |
Collapse
|
9
|
Suominen M, Kallio T. What We Currently Know about Carbon‐Supported Metal and Metal Oxide Nanomaterials in Electrochemical CO
2
Reduction. ChemElectroChem 2021. [DOI: 10.1002/celc.202100345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Milla Suominen
- Department of Chemistry and Materials Science Aalto University Kemistintie 1 02015 Espoo Finland
| | - Tanja Kallio
- Department of Chemistry and Materials Science Aalto University Kemistintie 1 02015 Espoo Finland
| |
Collapse
|
10
|
From CO2 to Value-Added Products: A Review about Carbon-Based Materials for Electro-Chemical CO2 Conversion. Catalysts 2021. [DOI: 10.3390/catal11030351] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The global warming and the dangerous climate change arising from the massive emission of CO2 from the burning of fossil fuels have motivated the search for alternative clean and sustainable energy sources. However, the industrial development and population necessities make the decoupling of economic growth from fossil fuels unimaginable and, consequently, the capture and conversion of CO2 to fuels seems to be, nowadays, one of the most promising and attractive solutions in a world with high energy demand. In this respect, the electrochemical CO2 conversion using renewable electricity provides a promising solution. However, faradaic efficiency of common electro-catalysts is low, and therefore, the design of highly selective, energy-efficient, and cost-effective electrocatalysts is critical. Carbon-based materials present some advantages such as relatively low cost and renewability, excellent electrical conductivity, and tunable textural and chemical surface, which show them as competitive materials for the electro-reduction of CO2. In this review, an overview of the recent progress of carbon-based electro-catalysts in the conversion of CO2 to valuable products is presented, focusing on the role of the different carbon properties, which provides a useful understanding for the materials design progress in this field. Development opportunities and challenges in the field are also summarized.
Collapse
|
11
|
Long-term stable and selective conversion of carbon dioxide to formate using dental amalgam electrode. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
He H, Yang C, Deng L, Wu J, Chen F, Huang J, Liu YN. Inside-mode indium oxide/carbon nanotubes for efficient carbon dioxide electroreduction by suppressing hydrogen evolution. Chem Commun (Camb) 2021; 57:1234-1237. [PMID: 33416808 DOI: 10.1039/d0cc07417a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The hydrogen evolution reaction is a huge challenge for CO2 electroreduction. Herein, an inside-mode indium oxide/carbon nanotube compound (MWCNTs@In2O3) is developed to maximize the catalytic effect and suppress hydrogen evolution, its HCOOH selectivity can reach up to 92.2% at -16.8 mA cm-2, which is more efficient than In2O3.
Collapse
Affiliation(s)
- Haichuan He
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China. and State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan 410083, China
| | - Congcheng Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Liu Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China. and State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan 410083, China
| | - Jian Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Fei Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Jianhan Huang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China. and State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
13
|
Wang G, Chen J, Ding Y, Cai P, Yi L, Li Y, Tu C, Hou Y, Wen Z, Dai L. Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem Soc Rev 2021; 50:4993-5061. [DOI: 10.1039/d0cs00071j] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This timely and comprehensive review mainly summarizes advances in heterogeneous electroreduction of CO2: from fundamentals to value-added products.
Collapse
|
14
|
Miola M, de Jong BCA, Pescarmona PP. An efficient method to prepare supported bismuth nanoparticles as highly selective electrocatalyst for the conversion of CO 2 into formate. Chem Commun (Camb) 2020; 56:14992-14995. [PMID: 33196068 DOI: 10.1039/d0cc06818g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a cost-effective, straightforward synthesis of a novel electrocatalyst for the reduction of CO2 to formate, which achieves nearly complete Faradaic efficiency (FE) at an overpotential (η) of 0.88 V under ambient conditions. The electrocatalyst was prepared using bismuth subsalicylate as precursor and consists of bismuth nanoparticles (Bi NPs) with an average diameter of 5.5 nm supported on activated carbon.
Collapse
Affiliation(s)
- Matteo Miola
- Chemical Engineering Group, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | | | | |
Collapse
|
15
|
Interfacial engineering of bismuth with reduced graphene oxide hybrid for improving CO2 electroreduction performance. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Lee H, Kim YJ, Sohn Y, Rhee CK. Co-deposits of Pt and Bi on Au disk toward formic acid oxidation. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04794-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|