1
|
Huang C, Zhang W, Hu X, Fei S, Nemangwele F, Maluta NE, Hu Y, Lv H, Hu P, Peng Z. Fe/Fe 3C particles encapsulated in hollow carbon nanoboxes for high performance zinc-air batteries. Dalton Trans 2024; 53:19378-19387. [PMID: 39513691 DOI: 10.1039/d4dt02396j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Zinc-air batteries are recognized for their environmental friendliness and high energy density; however, the slow kinetics of the oxygen reduction reaction (ORR) at the air electrode hinder their commercial viability. The research focuses on synthesizing cubic hollow carbon structures derived from Metal-Organic Frameworks (MOFs), which enhance catalytic performance through improved conductivity and mass transfer. The resulting Fe/Fe3C/HCNB catalyst demonstrates a half-wave potential of 0.826 V for ORR and achieves a peak power density of 274 mW cm-2 in zinc-air batteries, surpassing commercial Pt/C catalysts. Electrochemical impedance spectroscopy reveals that the hollow structure enhances hydrophilicity and reduces solution resistance, facilitating greater active site engagement in electrochemical reactions. The study concludes that the unique structural features of Fe/Fe3C/HCNB significantly improve discharge performance and stability, positioning it as a promising alternative for zinc-air battery applications.
Collapse
Affiliation(s)
- Chuyun Huang
- China-South Africa PV-Hydrogen Energy Joint Research Center, School of Science, Hubei University of Technology (HBUT), Wuhan 430068, China.
- College of Mechanical and Electrical Engineering, Guangzhou City Construction College, Guangzhou 510900, China
| | - Wenyuan Zhang
- China-South Africa PV-Hydrogen Energy Joint Research Center, School of Science, Hubei University of Technology (HBUT), Wuhan 430068, China.
| | - Xuezhi Hu
- College of Mechanical and Electrical Engineering, Guangzhou City Construction College, Guangzhou 510900, China
| | - Shiliang Fei
- College of Mechanical and Electrical Engineering, Guangzhou City Construction College, Guangzhou 510900, China
| | | | | | - Yangsen Hu
- China-South Africa PV-Hydrogen Energy Joint Research Center, School of Science, Hubei University of Technology (HBUT), Wuhan 430068, China.
| | - Hui Lv
- China-South Africa PV-Hydrogen Energy Joint Research Center, School of Science, Hubei University of Technology (HBUT), Wuhan 430068, China.
| | - Pei Hu
- China-South Africa PV-Hydrogen Energy Joint Research Center, School of Science, Hubei University of Technology (HBUT), Wuhan 430068, China.
| | - Zhuo Peng
- China-South Africa PV-Hydrogen Energy Joint Research Center, School of Science, Hubei University of Technology (HBUT), Wuhan 430068, China.
| |
Collapse
|
2
|
Aziz R, Abad S, Onaizi SA. Electrochemical conversion of CO 2 using metalorganic frameworks-based materials: A review on recent progresses and outlooks. CHEMOSPHERE 2024; 365:143312. [PMID: 39265732 DOI: 10.1016/j.chemosphere.2024.143312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Global warming has been mainly attributed to the excessive release of carbon dioxide (CO2) to the atmosphere. Several CO2 capture and conversion technologies have been developed in the past few decades with their own merits and limitations. Electrochemical conversion of CO2 is one of the most attractive techniques for combating CO2 emissions. However, the efficacy of the electrochemical reduction of CO2 hinges on the efficiency of the utilized materials (i.e., electrocatalysts). Metal organic frameworks (MOFs)-based materials have recently emerged as attractive tools for various applications, including the electrochemical conversion of CO2. Although there are some review articles on CO2 capture and conversion using different materials, reviews focusing specifically on the electrochemical conversion of CO2 using MOFs-based materials are still comparatively lacking. Additionally, the field of electrochemical conversion of CO2 into valuable chemicals is currently gaining high momentum, requiring comprehensive and recent reviews, which would provide researchers/professionals with a quick and easy access to the recent developments in this rapidly evolving research area. Accordingly, this article comprehensively reviews recent studies on the electrochemical conversion of CO2 using pristine/modified/functionalized MOFs as well as composite materials containing MOFs. Additionally, single atom catalysts (SACs) derived from MOFs and their applications for the electrochemical conversion of CO2 has also been reviewed. Furthermore, obstacles, challenges, limitations, and remaining research gaps have been identified, and future works to tackle them have been highlighted. Overall, this review article provides valuable discussion and insights into the recent advancements in the field of electrochemical conversion of CO2 into chemicals using MOFs-based materials.
Collapse
Affiliation(s)
- Ruqaiya Aziz
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31216, Saudi Arabia
| | - Suha Abad
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31216, Saudi Arabia
| | - Sagheer A Onaizi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31216, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals, Dhahran, 31216, Saudi Arabia.
| |
Collapse
|
3
|
Wang J, Yuan L, Zhang P, Mao J, Fan J, Zhang XL. Advances in zeolitic-imidazolate-framework-based catalysts for photo-/electrocatalytic water splitting, CO 2 reduction and N 2 reduction applications. NANOSCALE 2024; 16:7323-7340. [PMID: 38511283 DOI: 10.1039/d3nr06411e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Harnessing electrical or solar energy for the renewable production of value-added fuels and chemicals through catalytic processes (such as photocatalysis and electrocatalysis) is promising to achieve the goal of carbon neutrality. Owing to the large number of highly accessible active sites, highly porous structure, and charge separation/transfer ability, as well as excellent stability against chemical and electrochemical corrosion, zeolite imidazolate framework (ZIF)-based catalysts have attracted significant attention. Strategic construction of heterojunctions, and alteration of the metal node and the organic ligand of the ZIFs effectively regulate the binding energy of intermediates and the reaction energy barriers that allow tunable catalytic activity and selectivity of a product during reaction. Focusing on the currently existing critical issues of insufficient kinetics for electron transport and selective generation of ideal products, this review starts from the characteristics and physiochemical advantages of ZIFs in catalytic applications, then introduces promising regulatory approaches for advancing the kinetic process in emerging CO2 reduction, water splitting and N2 reduction applications, before proposing perspective modification directions.
Collapse
Affiliation(s)
- Jiaorong Wang
- School of Materials Science and Engineering, Zhengzhou University, 450001, P.R. China.
| | - Lihong Yuan
- School of Materials Science and Engineering, Zhengzhou University, 450001, P.R. China.
| | - Pan Zhang
- School of Materials Science and Engineering, Zhengzhou University, 450001, P.R. China.
| | - Jing Mao
- School of Materials Science and Engineering, Zhengzhou University, 450001, P.R. China.
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, 450001, P.R. China.
| | - Xiao Li Zhang
- School of Materials Science and Engineering, Zhengzhou University, 450001, P.R. China.
| |
Collapse
|
4
|
Wang C, Lv Z, Yang W, Feng X, Wang B. A rational design of functional porous frameworks for electrocatalytic CO 2 reduction reaction. Chem Soc Rev 2023; 52:1382-1427. [PMID: 36723190 DOI: 10.1039/d2cs00843b] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The electrocatalytic CO2 reduction reaction (ECO2RR) is considered one of the approaches with the most potential to achieve lower carbon emissions in the future, but a huge gap still exists between the current ECO2RR technology and industrial applications. Therefore, the design and preparation of catalysts with satisfactory activity, selectivity and stability for the ECO2RR have attracted extensive attention. As a classic type of functional porous framework, crystalline porous materials (e.g., metal organic frameworks (MOFs) and covalent organic frameworks (COFs)) and derived porous materials (e.g., MOF/COF composites and pyrolysates) have been regarded as superior catalysts for the ECO2RR due to their advantages such as designable porosity, modifiable skeleton, flexible active site structure, regulable charge transfer pathway and controllable morphology. Meanwhile, with the rapid development of nano-characterization and theoretical calculation technologies, the structure-activity relationships of functional porous frameworks have been comprehensively considered, i.e., metallic element type, local coordination environment, and microstructure, corresponding to selectivity, activity and mass transfer efficiency for the ECO2RR, respectively. In this review, the rational design strategy for functional porous frameworks is briefly but precisely generalized based on three key factors including metallic element type, local coordination environment, and microstructure. Then, details about the structure-activity relationships for functional porous frameworks are illustrated in the order of MOFs, COFs, composites and pyrolysates to analyze the effect of the above-mentioned three factors on their ECO2RR performance. Finally, the challenges and perspectives of functional porous frameworks for the further development of the ECO2RR are reasonably proposed, aiming to offer insights for future studies in this intriguing and significant research field.
Collapse
Affiliation(s)
- Changli Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China.
| | - Zunhang Lv
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China.
| | - Wenxiu Yang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China.
| | - Xiao Feng
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China.
| | - Bo Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China.
| |
Collapse
|
5
|
Zhang L, Biesold GM, Zhao C, Xu H, Lin Z. Necklace-Like Nanostructures: From Fabrication, Properties to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200776. [PMID: 35749232 DOI: 10.1002/adma.202200776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The shape-controlled synthesis of nanocrystals remains a hot research topic in nanotechnology. Particularly, the fabrication of 1D structures such as wires, rods, belts, and tubes has been an interesting and important subject within nanoscience in the last few decades. 1D necklace-like micro/nanostructures are a sophisticated geometry that has attracted increasing attention due to their anisotropic and periodic structure, intrinsic high surface area, abundant transport channels, exposure of each component to the surface, and multiscale roughness of the surface. These characteristics enable their unique electrical, optical, and catalytic properties. This review provides a comprehensive summary of the advanced research progress on the fabrication strategies, novel properties, and various applications of necklace-like structures. It begins with the main fabrication methods of necklace-like structures and subsequently details a variety of their properties and applications. It concludes with the authors' perspectives on future research and development of the necklace-like structures.
Collapse
Affiliation(s)
- Lei Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Chunyan Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Hui Xu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
6
|
Helal A, Shaheen Shah S, Usman M, Khan MY, Aziz MA, Mizanur Rahman M. Potential Applications of Nickel-Based Metal-Organic Frameworks and their Derivatives. CHEM REC 2022; 22:e202200055. [PMID: 35695377 DOI: 10.1002/tcr.202200055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/13/2022] [Indexed: 12/15/2022]
Abstract
Metal-Organic Frameworks (MOFs), a novel class of porous extended crystalline structures, are favored in different fields of heterogeneous catalysis, CO2 separation and conversion, and energy storage (supercapacitors) due to their convenience of synthesis, structural tailor-ability, tunable pore size, high porosity, large specific surface area, devisable structures, and adjustable compositions. Nickel (Ni) is a ubiquitous element extensively applied in various fields of catalysis and energy storage due to its low cost, high abundance, thermal and chemical stability, and environmentally benign nature. Ni-based MOFs and their derivatives provide us with the opportunity to modify different properties of the Ni center to improve their potential as heterogeneous catalysts or energy storage materials. The recent achievements of Ni-MOFs and their derivatives as catalysts, membrane materials for CO2 separation and conversion, electrode materials and their respective performance have been discussed in this review.
Collapse
Affiliation(s)
- Aasif Helal
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Usman
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohd Yusuf Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,K.A. CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammad Mizanur Rahman
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
7
|
Zhao Y, Zheng L, Jiang D, Xia W, Xu X, Yamauchi Y, Ge J, Tang J. Nanoengineering Metal-Organic Framework-Based Materials for Use in Electrochemical CO 2 Reduction Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006590. [PMID: 33739607 DOI: 10.1002/smll.202006590] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Electrocatalytic reduction of carbon dioxide to valuable chemicals is a sustainable technology that can achieve a carbon-neutral energy cycle in the environment. Electrochemical CO2 reduction reaction (CO2 RR) processes using metal-organic frameworks (MOFs), featuring atomically dispersed active sites, large surface area, high porosity, controllable morphology, and remarkable tunability, have attracted considerable research attention. Well-defined MOFs can be constructed to improve conductivity, introduce active centers, and form carbon-based single-atom catalysts (SACs) with enhanced active sites that are accessible for the development of CO2 conversion. In this review, the progress on pristine MOFs, MOF hybrids, and MOF-derived carbon-based SACs is summarized for the electrocatalytic reduction of CO2 . Finally, the limitations and potential improvement directions with respect to the advancement of MOF-related materials for the field of research are discussed. These summaries are expected to provide inspiration on reasonable design to develop stable and high-efficiency MOFs-based electrocatalysts for CO2 RR.
Collapse
Affiliation(s)
- Yingji Zhao
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| | - Lingling Zheng
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| | - Dong Jiang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| | - Wei Xia
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| | - Xingtao Xu
- JST-ERATO Yamauchi Materials Space-Tectonics Project, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba, 305-0044, Japan
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba, 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jianping Ge
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| | - Jing Tang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
8
|
Wilsey MK, Cox CP, Forsythe RC, McCarney LR, Müller AM. Selective CO2 reduction towards a single upgraded product: a minireview on multi-elemental copper-free electrocatalysts. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02010a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrocatalytic conversion of the greenhouse gas carbon dioxide to liquid fuels or upgraded chemicals is a critical strategy to mitigate anthropogenic climate change. To this end, we urgently need high-performance CO2 reduction catalysts.
Collapse
Affiliation(s)
| | - Connor P. Cox
- Materials Science Program
- University of Rochester
- New York 14627
- USA
| | - Ryland C. Forsythe
- Department of Chemical Engineering
- University of Rochester
- New York 14627
- USA
| | - Luke R. McCarney
- Department of Chemical Engineering
- University of Rochester
- New York 14627
- USA
| | - Astrid M. Müller
- Materials Science Program
- University of Rochester
- New York 14627
- USA
- Department of Chemical Engineering
| |
Collapse
|