1
|
Wang J, Long X, Zhang IY, Huang R. Pulsed versus direct current electrochemical co-catalytic peroxymonosulfate-based system: Elevated degradation and energy efficiency with enhanced oxidation mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132004. [PMID: 37423130 DOI: 10.1016/j.jhazmat.2023.132004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
In this work, the pulsed electrochemical (PE) system was investigated to activate peroxymonosulfate (PMS) with the addition of Fe(III) to achieve efficient degradation of sulfamethoxazole (SMX) with reduced energy consumption, in comparison with the direct current (DC) electrochemical system. The operational conditions of PE/PMS/Fe(III) system were optimized as 4 kHz pulse frequency, 50% duty cycle, and pH 3, at which 67.6% reduction of energy consumption and enhanced degradation performance were achieved compared to the DC/PMS/Fe(III) system. Results of electron paramagnetic resonance spectroscopy analysis and quenching and chemical probe experiment revealed the presence of •OH, SO4•-, and 1O2 in the system, with •OH being the dominant role. The concentrations of these active species were averagely 15 ± 1% higher in the PE/PMS/Fe(III) system than those of the DC/PMS/Fe(III) system. Identification of SMX byproducts was achieved based on high resolution mass spectrometry analysis to predict the degradation pathways. The SMX byproducts could eventually be eliminated by the PE/PMS/Fe(III) system with extended treatment time. Overall, the PE/PMS/Fe(III) system was demonstrated with high energy and degradation performance, and is appear to be an robust strategy for practical treatment of wastewater.
Collapse
Affiliation(s)
- Jiahao Wang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xianhu Long
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Igor Ying Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Rongfu Huang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Ahmad I, Basu D. Taguchi L 16 (4 4) orthogonal array-based study and thermodynamics analysis for electro-Fenton process treatment of textile industrial dye. CHEMICAL PRODUCT AND PROCESS MODELING 2022. [DOI: 10.1515/cppm-2022-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Reactive orange 16 (RO16) is the most widely used azo dye in Textile industry. Complex aromatic structures and resistivity to biological decay caused the dye pollutants incompletely treated by the conventional oxidative methods. The current study presents the electro-Fenton-based advanced oxidation treatment of RO16 dye and the process optimization by Taguchi-based design of experiment (DOE). Using a 500 mL volume lab-scale experimental setup, the process was first studied for the principal operational parameters (initial dye concentration (q); [H2O2]/[Fe+2] (R); current density (ρ); and temperature (T)) effect on decolourization (D
R
) and COD removal (C
R
). Then, by means of the L16 (44) orthogonal array (OA) formation, standard mean and signal-to-noise (S/N) ratio, the process was optimized for the response variables. The result showed the optimized result at q = 100 mg/L, R = 100, ρ = 8 mA/cm2, and T = 32 °C; with D
R
and C
R
as 90.023 and 84.344%, respectively. It was found that the current density affects the process most, followed by [H2O2]/[Fe+2] ratio, initial dye concentration, and temperature i.e., ρ > R > q > T. Also, with the analysis of variance (ANOVA), model equations for D
R
and C
R
were developed and its accuracy was verified for experimental results. At optimized conditions, the first order removal rate constants (k
a
) were found from batch results. Additionally, the thermodynamic constants (ΔH
e
, ΔS
e
, and ΔG
b
) were also calculated for the nature of heat-energy involved and temperature effect study on dye degradation. The results showed that the process was thermodynamically feasible, endothermic, and non-spontaneous with a lower energy barrier (E
A
= 46.7 kJ mol−1).
Collapse
Affiliation(s)
- Imran Ahmad
- Civil Engineering Department , Motilal Nehru National Institute of Technology Allahabad , Prayagraj , 211004 India
| | - Debolina Basu
- Civil Engineering Department , Motilal Nehru National Institute of Technology Allahabad , Prayagraj , 211004 India
| |
Collapse
|
3
|
Pan K, Hou H, Hu J, Yang J, Xiang J, Li C, Xu C, Chen S, Liang S, Yang J. Ca and Cu doped LaFeO 3 to promote coupling of photon carriers and redox cycling for facile photo-Fenton degradation of bisphenol A. CHEMOSPHERE 2022; 308:136325. [PMID: 36084826 DOI: 10.1016/j.chemosphere.2022.136325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Enhancements in the light response and hydrogen peroxide utilization are critical to the catalytic performance of heterogeneous Fenton-like perovskites. Here, in this research, oxygen vacancy-enriched La0.9Ca0.1Cu0.5Fe0.5O3-δ was prepared by a co-precipitation method with Cu substitution and Ca doping and demonstrated excellent performance for the degradation of bisphenol A. Both total organic carbon (TOC) removal and hydrogen peroxide utilization were close to 90% within 120 min at pH 3-7, where the TOC removal and hydrogen peroxide utilization were 2.5 times and 5.5 times of LaFeO3 in the absence of Ca and Cu doping. It demonstrated excellent stability to light irradiation and oxidation with respect to cycling and metal ion leaching. This revealed that oxygen vacancies were enriched in the catalyst with the substitution of Ca and Cu and contributed to the recombination of photogenerated electrons, thereby increasing the reduction efficiency of copper ions and accelerating the redox cycling of iron ions.
Collapse
Affiliation(s)
- Keliang Pan
- Hubei Institute of Geosciences, Wuhan, Hubei 430034, PR China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Key Laboratory of Resource and Ecological Environment Geology, Wuhan, Hubei, 430034, PR China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China.
| | - Jun Yang
- Hubei Institute of Geosciences, Wuhan, Hubei 430034, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jianqiao Xiang
- Hubei Institute of Geosciences, Wuhan, Hubei 430034, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Chuncheng Li
- Hubei Institute of Geosciences, Wuhan, Hubei 430034, PR China
| | - Chunyan Xu
- Hubei Institute of Geosciences, Wuhan, Hubei 430034, PR China
| | - Sijing Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| |
Collapse
|
4
|
ADNAN FH, PONTVIANNE S, PONS MN, MOUSSET E. Roles of H2 evolution overpotential, materials porosity and cathode potential on mineral electro-precipitation in microfluidic reactor – New criterion to predict and assess interdependency. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Lissaneddine A, Pons MN, Aziz F, Ouazzani N, Mandi L, Mousset E. Electrosorption of phenolic compounds from olive mill wastewater: Mass transport consideration under a transient regime through an alginate-activated carbon fixed-bed electrode. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128480. [PMID: 35183056 DOI: 10.1016/j.jhazmat.2022.128480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Olive mill wastewater (OMWW) is an environmentally critical effluent, specifically due to its high content of phenolic compounds (PCs), which are hazardous due to their antimicrobial activities in water. However, their properties have good health effects at suitable doses. For the first time, the electrosorption of PCs from actual OMWW has been proposed for their possible recovery as value-added compounds, while decontaminating OMWW. A bio-sourced alginate-activated carbon (AC) fixed-bed electrode was prepared based on the reuse of olive pomace solid waste as powdered AC. At the optimal AC content (1% w/v), the internal ohmic drop voltage was lower (2.26 V) and the mass transport coefficient was higher (9.7 10-5 m s-1) along with the diffusivity (7.3 10-9 m2 s-1), which led to enhanced electrosorption rates. Afterward, an optimal electrode potential was obtained (-1.1 V vs. Ag/AgCl), while higher voltages led to faradaic reactions. Moreover, the adsorption capacity was lower (123 mg g-1) than that of electrosorption (170 mg g-1) and was even higher (307 mg g-1) with actual effluents. This was probably due to the influence of electromigration, which was confirmed by new models that could predict the electrosorption kinetics well considering mass transport and acid dissociation constants.
Collapse
Affiliation(s)
- Amina Lissaneddine
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France; National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| | | | - Faissal Aziz
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| | - Naaila Ouazzani
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| | - Laila Mandi
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| | | |
Collapse
|
6
|
Adnan FH, Pons M, Mousset E. Thin film microfluidic reactors in electrochemical advanced oxidation processes for wastewater treatment: A review on influencing parameters, scaling issues, and engineering considerations. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
| | - Marie‐Noëlle Pons
- CNRS LRGP Université de Lorraine Nancy France
- LTSER‐LRGP CNRS Université de Lorraine Nancy France
| | | |
Collapse
|
7
|
Lissaneddine A, Pons MN, Aziz F, Ouazzani N, Mandi L, Mousset E. A critical review on the electrosorption of organic compounds in aqueous effluent - Influencing factors and engineering considerations. ENVIRONMENTAL RESEARCH 2022; 204:112128. [PMID: 34600882 DOI: 10.1016/j.envres.2021.112128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Despite being an old process from the end of the 19th century, electrosorption has attracted renewed attention in recent years because of its unique properties and advantages compared to other separation technologies and due to the concomitant development of new porous electrode materials. Electrosorption offer the advantage to separate the pollutants from wastewater with the possibility of selectively adsorbing and desorbing the targeted compounds. A comprehensive review of electrosorption is provided with particular attention given to the electrosorption of organic compounds, unlike existing capacitive deionization review papers that only focus on inorganic salts. The background and principle of electrosorption are first presented, while the influence of the main parameters (e.g., electrode materials, electrode potential, physico-chemistry of the electrolyte solutions, type of compounds, co-sorption effect, reactor design, etc.) is then detailed and the modeling and engineering aspects are discussed. Finally, the main output and future prospects about recovery studies and combination between electro-sorption/desorption and degradation processes are given. This review particularly highlights that carbon-based materials have been mostly employed (85% of studies) as porous electrode in organics electrosorption, while existing studies lack of electrode stability and durability tests in real conditions. These electrodes have been implemented in a fixed-bed reactor design most of the time (43% of studies) due to enhanced mass transport. Moreover, the electrode potential is a major criterion: it should be applied in the non-faradaic domain otherwise unwanted reactions can easily occur, especially the corrosion of carbon from 0.21 V/standard hydrogen electrode or the water oxidation/reduction. Furthermore, there is lack of studies performed with actual effluents and without addition of supporting electrolyte, which is crucial for testing the real efficiency of the process. The associated predictive model will be required by considering the matrix effect along with transport phenomena and physico-chemical characteristics of targeted organic compounds.
Collapse
Affiliation(s)
- Amina Lissaneddine
- Université de Lorraine, CNRS, LRGP, F-54000, Nancy, France; National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco
| | | | - Faissal Aziz
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco
| | - Naaila Ouazzani
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco
| | - Laila Mandi
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco
| | | |
Collapse
|
8
|
Adnan FH, Pons MN, Mousset E. Mass transport evolution in microfluidic thin film electrochemical reactors: New correlations from millimetric to submillimetric interelectrode distances. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
9
|
Adnan FH, Mousset E, Pontvianne S, Pons MN. Mineral cathodic electro-precipitation and its kinetic modelling in thin-film microfluidic reactor during advanced electro-oxidation process. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Mousset E, Loh WH, Lim WS, Jarry L, Wang Z, Lefebvre O. Cost comparison of advanced oxidation processes for wastewater treatment using accumulated oxygen-equivalent criteria. WATER RESEARCH 2021; 200:117234. [PMID: 34058485 DOI: 10.1016/j.watres.2021.117234] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Advanced oxidation processes (AOPs) have received a lot of attention over the years as advanced physico-chemical polishing wastewater treatments to remove biorefractory pollutants. Additionally, many studies report their excellent degradation and mineralization performance as stand-alone technologies too, demonstrating the versatility of these processes; however, there is a lack of suitable methods to compare the performance (in terms of removal efficiency and operating costs) of different AOPs in the same conditions. In this context, the goal of this paper is to propose a systematic investigation by introducing a novel criterion, namely the accumulated oxygen-equivalent chemical-oxidation dose (AOCD), to systematically compare the diverse AOPs available: ozonation, H2O2 photolysis, Fenton, photo-Fenton, electro-Fenton and photoelectro-Fenton (paired with anodic oxidation, for the latter two). For each of these, the cost efficiency was determined by optimizing the operating conditions for the removal of phenol, selected as a model pollutant (1.4 mM, equivalent to 100 mg-C L-1). The operating costs considered sludge management, chemical use and electricity consumption. Among all AOPs, electro-Fenton was the most cost-effective (108 - 125 € m-3), notwithstanding the mineralization target (50%, 75% and 99%), owing to its electrocatalytic behavior. Chemical Fenton proved competitive too up to 50% of mineralization, meaning that it could also be considered as a cost-effective pre-treatment solution. AOCD was the lowest for electro-Fenton, which could be attributed to its excellent faradaic yield, while UV-based processes generally required the highest dose. The AOCD criterion could serve as a baseline for AOP comparison and prove useful for the legislator to determine the "best available techniques" as defined by the Industrial Emissions European Union Directive 2010/75/EU.
Collapse
Affiliation(s)
- Emmanuel Mousset
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore 117576, Singapore; Laboratoire Réactions et Génie des Procédés, UMR CNRS 7274, Université de Lorraine, 1 rue Grandville BP 20451, 54001 Nancy cedex, France
| | - Wei Hao Loh
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore 117576, Singapore
| | - Wei Shien Lim
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore 117576, Singapore
| | - Léa Jarry
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore 117576, Singapore
| | - Zuxin Wang
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore 117576, Singapore; School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, China
| | - Olivier Lefebvre
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore 117576, Singapore.
| |
Collapse
|
11
|
Clematis D, Panizza M. Solid polymer electrolyte as an alternative approach for the electrochemical removal of herbicide from groundwater. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Treatment of Tebuthiuron in synthetic and real wastewater using electrochemical flow-by reactor. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.114978] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Alagesan J, Jaisankar M, Muthuramalingam S, Mousset E, Chellam PV. Influence of number of azo bonds and mass transport limitations towards the elimination capacity of continuous electrochemical process for the removal of textile industrial dyes. CHEMOSPHERE 2021; 262:128381. [PMID: 33182108 DOI: 10.1016/j.chemosphere.2020.128381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
This study focusses on the electrochemical decomposition of synthetic azo dyes (RO16, RR120 and DR80) using stainless steel electrodes, which is efficient, cost effective and industrially driven process. The experiments were carried out in a continuous electrochemical reactor and the effects of influencing parameters (initial concentration of dye, electrolyte concentration, pH) governing the process efficiency was studied. The interaction between the influencing parameters was investigated using Response Surface Methodology (RSM) and the regression value obtained for the generated model was above 0.9 for all the three dyes. The elimination capacity of electrochemical reactor was studied for the continuous removal of azo dyes with different ranges of concentration (100-400 mg L-1) and flow rate (0.1-0.5 L h-1). The maximum elimination capacity was obtained at a flow rate of 0.5 L h-1 for 300 mg L-1 of initial concentration of dye for RO16 and RR120 whereas it was 0.5 L h-1 for 400 mg L-1 of DR80. Further, a general dimensionless current density relation has been established for stirred tank reactor and allowed characterizing the relationship between kinetics and mass transport contributing to the overall reaction rate. The results quantitatively confirmed that the rate of electrochemical decolorization increased with the increasing initial dye concentration and flow rate due to the mass transport limitation. As newly established, the decolorization is also directly linked to the number of azo bonds.
Collapse
Affiliation(s)
- Jaanavee Alagesan
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Madurai, Tamilnadu, India
| | - MecghaSri Jaisankar
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Madurai, Tamilnadu, India
| | - Sindhu Muthuramalingam
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Madurai, Tamilnadu, India
| | - Emmanuel Mousset
- Laboratoire Réactions et Génie des Procédés, UMR CNRS 7274, Université de Lorraine, 1 Rue Grandville BP 20451, 54001, Nancy Cedex, France.
| | | |
Collapse
|
14
|
Huang R, Gu X, Sun W, Chen L, Du Q, Guo X, Li J, Zhang M, Li C. In situ synthesis of Cu+ self-doped CuWO4/g-C3N4 heterogeneous Fenton-like catalysts: The key role of Cu+ in enhancing catalytic performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117174] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|