1
|
Wang Y, Li J, Song P, Yang J, Gu Z, Wang T, Wang C. In-situ decoration of tin sulfide on Niobium carbide MXene with robust electronic coupling for improved sodium storage performance. J Colloid Interface Sci 2023; 636:255-266. [PMID: 36634395 DOI: 10.1016/j.jcis.2023.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Tin sulfide (SnS) has been considered as one of the most promising sodium storage materials because of its excellent electrochemical activity, low cost, and low-dimensional structure. However, owing to the serious volume change upon discharging/charging and poor electronic conductivity, the SnS-based electrodes often suffer from electrode pulverization and sluggish reaction kinetics, thus resulting in serious capacity fading and degraded rate capability. In this work, SnS nanoparticles uniformly distributed on the surface of the layered Niobium carbide MXene (SnS/Nb2CTx) were fabricated through a facile solvothermal approach followed by calcination, endowing the SnS/Nb2CTx with a three-dimensional interconnected framework as well as fast charge transfer. Benefitting from the excellent electronic/ionic conductivity, efficient buffering matrix, abundant active sites, and high sodium storage activity inherited from the structure design, the robust electronic coupling between SnS nanoparticle and Nb2CTx MXene results in excellent electrochemical output, which demonstrates superior reversible capacities of 479.6 (0.1 A/g up to 100 cycles) and 278.9 mAh/g (0.5 A/g up to 500 cycles) upon sodium storage, respectively. The excellent electrochemical performance manifests the promise of the combination of metal sulfides with Nb2CTx MXene to fabricate high-performance electrodes for sodium storage.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China
| | - Jiabao Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China.
| | - Penghao Song
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China
| | - Jian Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China
| | - Zhihao Gu
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China
| | - Tianyi Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China.
| | - Chengyin Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China.
| |
Collapse
|
2
|
Sandwich-like SnO2/Cu@Carbon composites with long-term cycling stability as lithium-ion battery anodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
3
|
Wang M, Chen T, Liao T, Zhang X, Zhu B, Tang H, Dai C. Tin dioxide-based nanomaterials as anodes for lithium-ion batteries. RSC Adv 2020; 11:1200-1221. [PMID: 35423690 PMCID: PMC8693589 DOI: 10.1039/d0ra10194j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
The development of new electrode materials for lithium-ion batteries (LIBs) has attracted significant attention because commercial anode materials in LIBs, like graphite, may not be able to meet the increasing energy demand of new electronic devices. Tin dioxide (SnO2) is considered as a promising alternative to graphite due to its high specific capacity. However, the large volume changes of SnO2 during the lithiation/delithiation process lead to capacity fading and poor cycling performance. In this review, we have summarized the synthesis of SnO2-based nanomaterials with various structures and chemical compositions, and their electrochemical performance as LIB anodes. This review addresses pure SnO2 nanomaterials, the composites of SnO2 and carbonaceous materials, the composites of SnO2 and transition metal oxides, and other hybrid SnO2-based materials. By providing a discussion on the synthesis methods and electrochemistry of some representative SnO2-based nanomaterials, we aim to demonstrate that electrochemical properties can be significantly improved by modifying chemical composition and morphology. By analyzing and summarizing the recent progress in SnO2 anode materials, we hope to show that there is still a long way to go for SnO2 to become a commercial LIB electrode and more research has to be focused on how to enhance the cycling stability.
Collapse
Affiliation(s)
- Minkang Wang
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 China
| | - Tianrui Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 P. R. China
| | - Tianhao Liao
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 China
| | - Xinglong Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 China
| | - Bin Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 China
| | - Hui Tang
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 China
| | - Changsong Dai
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 P. R. China
| |
Collapse
|
4
|
Zhang S, Ying H, Huang P, Wang J, Zhang Z, Yang T, Han WQ. Rational Design of Pillared SnS/Ti 3C 2T x MXene for Superior Lithium-Ion Storage. ACS NANO 2020; 14:17665-17674. [PMID: 33301296 DOI: 10.1021/acsnano.0c08770] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
MXenes have been widely explored in energy storage because of their extraordinary properties; however, the majority of research on their application was staged at multilayered MXenes or assisted by carbon materials. Scientifically speaking, the two most distinctive properties of MXenes are usually neglected, composed of large interlayer spacing and abundant surface chemistry, which distinguish MXenes from other two-dimensional materials. Herein, few-layered MXene (f-MXene) nanosheet powders can be easily prepared according to the modified solution-phase flocculation method, completely avoiding the restacking phenomenon of f-MXene nanosheets in preparation and oxidation issues during the storage process. Via further employing the solvothermal reaction and annealing treatment, we successfully constructed pillared SnS/Ti3C2Tx composites decorated with in situ formed TiO2 nanoparticles. In the composites, MXenes can play the role of a conductive network, a buffer matrix for volume expansion of SnS, while the active SnS nanoplates can fully deliver the advantage of high capacity and further induce interlayer engineering of Ti3C2Tx during cycling. As a result, the pillared SnS/Ti3C2Tx MXene composites exhibit obvious improvement in electrochemical performance. Interestingly, there is an apparent enhancement of capacity at succedent cycling, which can be ascribed to the "pillar effect" of Ti3C2Tx MXenes. The efforts and attempts made in this work can further broaden the development of pillared MXene composites.
Collapse
Affiliation(s)
- Shunlong Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hangjun Ying
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pengfei Huang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianli Wang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhao Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tiantian Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei-Qiang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Miao X, Ge X, Wang P, Zhao D, Yin L. Size-tunable SnO2/Co2SnO4 nanoparticles loaded 3D reduced graphene oxide aerogel architecture as anodes for high performance lithium ion batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Zhang S, Ying H, Yuan B, Hu R, Han WQ. Partial Atomic Tin Nanocomplex Pillared Few-Layered Ti 3C 2T x MXenes for Superior Lithium-Ion Storage. NANO-MICRO LETTERS 2020; 12:78. [PMID: 34138291 PMCID: PMC7770861 DOI: 10.1007/s40820-020-0405-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/02/2020] [Indexed: 05/23/2023]
Abstract
MXenes have attracted great interest in various fields, and pillared MXenes open a new path with larger interlayer spacing. However, the further study of pillared MXenes is blocked at multilayered state due to serious restacking phenomenon of few-layered MXene nanosheets. In this work, for the first time, we designed a facile NH4+ method to fundamentally solve the restacking issues of MXene nanosheets and succeeded in achieving pillared few-layered MXene. Sn nanocomplex pillared few-layered Ti3C2Tx (STCT) composites were synthesized by introducing atomic Sn nanocomplex into interlayer of pillared few-layered Ti3C2Tx MXenes via pillaring technique. The MXene matrix can inhibit Sn nanocomplex particles agglomeration and serve as conductive network. Meanwhile, the Sn nanocomplex particles can further open the interlayer spacing of Ti3C2Tx during lithiation/delithiation processes and therefore generate extra capacity. Benefiting from the "pillar effect," the STCT composites can maintain 1016 mAh g-1 after 1200 cycles at 2000 mA g-1 and deliver a stable capacity of 680 mAh g-1 at 5 A g-1, showing one of the best performances among MXene-based composites. This work will provide a new way for the development of pillared MXenes and their energy storage due to significant breakthrough from multilayered state to few-layered one.
Collapse
Affiliation(s)
- Shunlong Zhang
- School of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, People's Republic of China
| | - Hangjun Ying
- School of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, People's Republic of China
| | - Bin Yuan
- School of Materials Science and Engineering, South China University of Technology, 510641, Guangzhou, People's Republic of China
- Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, 510641, Guangzhou, People's Republic of China
| | - Renzong Hu
- School of Materials Science and Engineering, South China University of Technology, 510641, Guangzhou, People's Republic of China
- Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, 510641, Guangzhou, People's Republic of China
| | - Wei-Qiang Han
- School of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, People's Republic of China.
| |
Collapse
|