1
|
Li CP, Lai GY. Synthesis and Capacitive Properties of Mesoporous Tungsten Oxide Films Prepared by Ultrasonic Spray Deposition. ACS OMEGA 2023; 8:40878-40889. [PMID: 37929132 PMCID: PMC10620903 DOI: 10.1021/acsomega.3c05677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023]
Abstract
Mesoporous tungsten trioxide (WO3) films are prepared by the combination of the template-assisted sol-gel method and ultrasonic spraying deposition (USD) for supercapacitors, and then the surface morphology and electrochemical performance of the films are studied. Compared to WO3 prepared by the traditional hydrothermal synthesis and spin coating method, the films obtained by USD exhibit advantages such as low cost, minimal material usage, and suitability for large-area in-line manufacturing. Additionally, the mesoporous structure of USD-produced films is also supportive of ion transportation. Due to the high specific surface area of WO3 films deposited by USD, it is a material capable of use in a high-performance energy storage device. Through the control of spray coats, the film thickness and specific capacitance can be effectively controlled. Electrochemical measurements show that the mesoporous WO3 films possess excellent electrochemical performance with a maximum specific capacitance of 109.15 F/g at 0.5 A/g. The cycling performance up to 5000 cycles of mesoporous WO3 films is due to the stable nature of nanocrystalline produced by the combination of USD and sol-gel chemistry.
Collapse
Affiliation(s)
- Chi-Ping Li
- Department
of Chemical Engineering, National United
Unversity, 360302 Maioli, Taiwan
| | - Gui Yang Lai
- Department
of Materials Science and Engineering, National
United University, 360302 Maioli, Taiwan
| |
Collapse
|
2
|
Parveen S, Cochran EW, Zulfiqar S, Amin MA, Farooq Warsi M, Chaudhary K. Iron/vanadium co-doped tungsten oxide nanostructures anchored on graphitic carbon nitride sheets (FeV-WO 3@g-C 3N 4) as a cost-effective novel electrode material for advanced supercapacitor applications. RSC Adv 2023; 13:26822-26838. [PMID: 37681040 PMCID: PMC10481906 DOI: 10.1039/d3ra04108e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
In this work, we studied the effect of iron (Fe) and vanadium (V) co-doping (Fe/V), and graphitic carbon nitride (g-C3N4) on the performance of tungsten oxide (WO3) based electrodes for supercapacitor applications. The lone pair of electrons on nitrogen can improve the surface polarity of the g-C3N4 electrode material, which may results in multiple binding sites on the surface of electrode for interaction with electrolyte ions. As electrolyte ions interact with g-C3N4, they quickly become entangled with FeV-WO3 nanostructures, and the contact between the electrolyte and the working electrode is strengthened. Herein, FeV-WO3@g-C3N4 is fabricated by a wet chemical approach along with pure WO3 and FeV-WO3. All of the prepared samples i.e., WO3, FeV-WO3, and FeV-WO3@g-C3N4 were characterized by XRD, FTIR, EDS, FESEM, XPS, Raman, and BET techniques. Electrochemical performance is evaluated by cyclic voltammetry (CV), galvanic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS). It is concluded from electrochemical studies that FeV-WO3@g-C3N4 exhibits the highest electrochemical performance with specific capacitance of 1033.68 F g-1 at scan rate 5 mV s-1 in the potential window range from -0.8 to 0.25 V, that is greater than that for WO3 (422.76 F g-1) and FeV-WO3 (669.76 F g-1). FeV-WO3@g-C3N4 has the highest discharge time (867 s) that shows it has greater storage capacity, and its coulombic efficiency is 96.7%, which is greater than that for WO3 (80.1%) and FeV-WO3 (92.1%), respectively. Furthermore, excellent stability up to 2000 cycles is observed in FeV-WO3@g-C3N4. It is revealed from EIS measurements that equivalent series resistance and charge transfer values calculated for FeV-WO3@g-C3N4 are 1.82 Ω and 0.65 Ω, respectively.
Collapse
Affiliation(s)
- Sajida Parveen
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Eric W Cochran
- Department of Chemical and Biological Engineering, Iowa State University Sweeney Hall, 618 Bissell Road Ames Iowa 50011 USA
| | - Sonia Zulfiqar
- Department of Chemical and Biological Engineering, Iowa State University Sweeney Hall, 618 Bissell Road Ames Iowa 50011 USA
- Department of Chemistry, Faculty of Science, University of Ostrava 30. Dubna 22 Ostrava 701 03 Czech Republic
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University PO Box 11099 Taif 21944 Saudi Arabia
| | - Muhammad Farooq Warsi
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Khadija Chaudhary
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| |
Collapse
|
3
|
Gao H, Sun L, Ni D, Zhang L, Wang H, Bu W, Li J, Shen Q, Wang Y, Liu Y, Zheng X. Regulating electron transportation by tungsten oxide nanocapacitors for enhanced radiation therapy. J Nanobiotechnology 2023; 21:205. [PMID: 37386437 DOI: 10.1186/s12951-023-01962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023] Open
Abstract
In the process of radiation therapy (RT), the cytotoxic effects of excited electrons generated from water radiolysis tend to be underestimated due to multiple biochemical factors, particularly the recombination between electrons and hydroxyl radicals (·OH). To take better advantage of radiolytic electrons, we constructed WO3 nanocapacitors that reversibly charge and discharge electrons to regulate electron transportation and utilization. During radiolysis, WO3 nanocapacitors could contain the generated electrons that block electron-·OH recombination and contribute to the yield of ·OH at a high level. These contained electrons could be discharged from WO3 nanocapacitors after radiolysis, resulting in the consumption of cytosolic NAD+ and impairment of NAD+-dependent DNA repair. Overall, this strategy of nanocapacitor-based radiosensitization improves the radiotherapeutic effects by increasing the utilization of radiolytic electrons and ·OH, warranting further validation in multiple tumour models and preclinical experiments.
Collapse
Affiliation(s)
- Hongbo Gao
- Department of Radiation Oncology, Shanghai Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Li Sun
- Department of Radiation Oncology, Shanghai Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Libo Zhang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenbo Bu
- Department of Material Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Jinjin Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Qianwen Shen
- Department of Radiation Oncology, Shanghai Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Ya Wang
- Department of Material Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Yanyan Liu
- Department of Material Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
| | - Xiangpeng Zheng
- Department of Radiation Oncology, Shanghai Huadong Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
4
|
Mineo G, Bruno E, Mirabella S. Advances in WO 3-Based Supercapacitors: State-of-the-Art Research and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13081418. [PMID: 37111003 PMCID: PMC10142086 DOI: 10.3390/nano13081418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 06/01/2023]
Abstract
Electrochemical energy storage devices are one of the main protagonists in the ongoing technological advances in the energy field, whereby the development of efficient, sustainable, and durable storage systems aroused a great interest in the scientific community. Batteries, electrical double layer capacitors (EDLC), and pseudocapacitors are characterized in depth in the literature as the most powerful energy storage devices for practical applications. Pseudocapacitors bridge the gap between batteries and EDLCs, thus supplying both high energy and power densities, and transition metal oxide (TMO)-based nanostructures are used for their realization. Among them, WO3 nanostructures inspired the scientific community, thanks to WO3's excellent electrochemical stability, low cost, and abundance in nature. This review analyzes the morphological and electrochemical properties of WO3 nanostructures and their most used synthesis techniques. Moreover, a brief description of the electrochemical characterization methods of electrodes for energy storage, such as Cyclic Voltammetry (CV), Galvanostatic Charge-Discharge (GCD), and Electrochemical Impedance Spectroscopy (EIS) are reported, to better understand the recent advances in WO3-based nanostructures, such as pore WO3 nanostructures, WO3/carbon nanocomposites, and metal-doped WO3 nanostructure-based electrodes for pseudocapacitor applications. This analysis is reported in terms of specific capacitance calculated as a function of current density and scan rate. Then we move to the recent progress made for the design and fabrication of WO3-based symmetric and asymmetric supercapacitors (SSCs and ASCs), thus studying a comparative Ragone plot of the state-of-the-art research.
Collapse
Affiliation(s)
- Giacometta Mineo
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, via S. Sofia 64, 95123 Catania, Italy; (G.M.); (E.B.)
- CNR-IMM, Università di Catania, via S. Sofia 64, 95123 Catania, Italy
| | - Elena Bruno
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, via S. Sofia 64, 95123 Catania, Italy; (G.M.); (E.B.)
- CNR-IMM, Università di Catania, via S. Sofia 64, 95123 Catania, Italy
| | - Salvo Mirabella
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, via S. Sofia 64, 95123 Catania, Italy; (G.M.); (E.B.)
- CNR-IMM, Università di Catania, via S. Sofia 64, 95123 Catania, Italy
| |
Collapse
|
5
|
Jain A, Manippady SR, Tang R, Nishihara H, Sobczak K, Matejka V, Michalska M. Vanadium oxide nanorods as an electrode material for solid state supercapacitor. Sci Rep 2022; 12:21024. [PMID: 36470983 PMCID: PMC9723181 DOI: 10.1038/s41598-022-25707-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022] Open
Abstract
The electrochemical properties of metal oxides are very attractive and fascinating in general, making them a potential candidate for supercapacitor application. Vanadium oxide is of particular interest because it possesses a variety of valence states and is also cost effective with low toxicity and a wide voltage window. In the present study, vanadium oxide nanorods were synthesized using a modified sol-gel technique at low temperature. Surface morphology and crystallinity studies were carried out by using scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy analysis. To the best of our knowledge, the as-prepared nanorods were tested with magnesium ion based polymer gel electrolyte for the first time. The prepared supercapacitor cell exhibits high capacitance values of the order of ~ 141.8 F g-1 with power density of ~ 2.3 kW kg-1 and energy density of ~ 19.1 Wh kg-1. The cells show excellent rate capability and good cycling stability.
Collapse
Affiliation(s)
- Amrita Jain
- grid.413454.30000 0001 1958 0162Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Sai Rashmi Manippady
- grid.413454.30000 0001 1958 0162Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Rui Tang
- grid.69566.3a0000 0001 2248 6943Advanced Institute for Materials Research (AIMR-WPI), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 Japan
| | - Hirotomo Nishihara
- grid.69566.3a0000 0001 2248 6943Advanced Institute for Materials Research (AIMR-WPI), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 Japan ,grid.69566.3a0000 0001 2248 6943Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 Japan
| | - Kamil Sobczak
- grid.12847.380000 0004 1937 1290Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Vlastimil Matejka
- grid.440850.d0000 0000 9643 2828Department of Chemistry and Physico-Chemical Processes, Faculty of Materials Science and Technology, VŠB-Technical University of Ostrava, 17 Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Monika Michalska
- grid.440850.d0000 0000 9643 2828Department of Chemistry and Physico-Chemical Processes, Faculty of Materials Science and Technology, VŠB-Technical University of Ostrava, 17 Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
6
|
Yu H, Wang M, Yan J, Dang H, Zhu H, Liu Y, Wen M, Li G, Wu L. Complete mineralization of phenolic compounds in visible-light-driven photocatalytic ozonation with single-crystal WO 3 nanosheets: Performance and mechanism investigation. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128811. [PMID: 35381509 DOI: 10.1016/j.jhazmat.2022.128811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Complete mineralization of phenolic compounds into CO2 and H2O is desirable for removing them in wastewater, but it is challenging due to the generated recalcitrant intermediates, which requires highly effective advanced oxidation process with proper catalysts. Herein, we found that single-crystal WO3 nanosheets (NSs)-based photocatalytic ozonation (PCO) can realize complete mineralization of phenols (phenol and 2-chlorophenol) under visible light irradiation. Almost 100% mineralization ratio of phenols was achieved through WO3 NSs-based PCO system within short time. By comparing their performances with those of polycrystalline WO3 nanoparticles, detecting and analyzing the intermediates, identifying the dominant radicals and conducting some electrochemical characterizations, the origin of superior catalytic activity of WO3 NSs was uncovered, the mineralization pathways and the overall mechanism were proposed. The excellent PCO performance of WO3 NSs was contributed to their nanosheet morphology with single-crystal microstructure and good dispersion, which can provide continuous interior channels for the photogenerated charge transport from the bulk to surface of WO3 NSs and enough active sites for the surface reactions triggered by these charges. This work puts forwards new ideas to design highly active photocatalysts for PCO and helps deepen understanding of the catalytic mechanism of PCO.
Collapse
Affiliation(s)
- Haidong Yu
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Mingxi Wang
- Key Laboratory for Biomass-based Environment & Energy Materials in Petroleum & Chemical Industries, School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiabao Yan
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Hui Dang
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Hui Zhu
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yuejin Liu
- Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Meicheng Wen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guisheng Li
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ling Wu
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
7
|
Selective oxidation of glycerol over different shaped WO3 supported Pt NPs. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.111545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Han W, Zhong M, Ju H, Chen D, Yuan L, Liu X, Wang C. Synthesis of oxygen‐deficient WO3‐x nanoplates and hollow microspheres decorated on carbon cloth for supercapacitor. ChemElectroChem 2022. [DOI: 10.1002/celc.202200122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wenjing Han
- China Academy of Engineering Physics Research Center of Laser Fusion 621000 Mianyang CHINA
| | - Minglong Zhong
- China Academy of Engineering Physics Research Center of Laser Fusion 7 CHINA
| | - Hui Ju
- Mianyang Normal University: Mianyang Teachers' College College of Chemistry and Chemical Engineering CHINA
| | - Deping Chen
- China Academy of Engineering Physics Research Center of Laser Fusion 7 CHINA
| | - Lei Yuan
- China Academy of Engineering Physics Research Center of Laser Fusion 7 CHINA
| | - Xudong Liu
- China Academy of Engineering Physics Research Center of Laser Fusion 7 CHINA
| | - Chaoyang Wang
- China Academy of Engineering Physics Research Center of Laser Fusion 7 CHINA
| |
Collapse
|
9
|
Shi J, Xing X, Wang H, Ge L, Sun H, Lv B. Oxygen vacancy enriched Cu-WO3 hierarchical structures for the thermal decomposition of ammonium perchlorate. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01027a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu-WO3 hierarchical structures are rapidly prepared and they exhibit excellent catalytic activity in AP decomposition due to their rich oxygen vacancies and Lewis acid sites.
Collapse
Affiliation(s)
- Jing Shi
- Institutional Center for Shared Technologies and Facilities, State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangying Xing
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huixiang Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Lin Ge
- Institutional Center for Shared Technologies and Facilities, State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Haizhen Sun
- Institutional Center for Shared Technologies and Facilities, State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Baoliang Lv
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| |
Collapse
|
10
|
Zhao S, Dong C, Huang F. Proton-insertion-pseudocapacitance of tungsten bronze tunnel structure enhanced by transition metal ion anchoring. NANOSCALE 2021; 13:16790-16798. [PMID: 34605519 DOI: 10.1039/d1nr02384e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The one-dimensional channel array of hexagonal tungsten bronze (WO3) offers an electron transfer matrix, but its overwhelming H+ adsorption hinders it from being a good supercapacitor electrode material. Inspired by the Volcano plot on the relation between transition-metal and free energy of H-adsorption, we propose a new strategy to anchor transition metal ions (Zn2+, Cu2+, Ni2+, Ag+, Au3+ and Ir3+) into the WO3 lattice to improve proton-insertion based pseudocapacitance. Among the variety of transition metals, Zn2+ exhibits the optimal O 2p band center, which matches well with the best experimental capacitive behavior. The molar ratio of Zn/WO3 ranges from 0.2 to 0.6. The specific capacitance for Zn2+-anchored WO3 (390 F g-1) reaches 202% of that of WO3 (193 F g-1) at 0.5 A g-1 with robust stability (259 F g-1 at 3 A g-1 for 3000 cycles). Density functional theory confirms that O 2p is shifted down by the d-filling cations, which corresponds to alleviated O-H interaction and facilitated H+ desorption. The band tuning by transition-metal-ion incorporation would break new ground on developing high-capacitance metal oxide supercapacitors.
Collapse
Affiliation(s)
- Siwei Zhao
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China.
| | - Chenlong Dong
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China.
| | - Fuqiang Huang
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China.
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
| |
Collapse
|
11
|
Han W, Shi Q, Hu R. Advances in Electrochemical Energy Devices Constructed with Tungsten Oxide-Based Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:692. [PMID: 33802013 PMCID: PMC8000231 DOI: 10.3390/nano11030692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 01/09/2023]
Abstract
Tungsten oxide-based materials have drawn huge attention for their versatile uses to construct various energy storage devices. Particularly, their electrochromic devices and optically-changing devices are intensively studied in terms of energy-saving. Furthermore, based on close connections in the forms of device structure and working mechanisms between these two main applications, bifunctional devices of tungsten oxide-based materials with energy storage and optical change came into our view, and when solar cells are integrated, multifunctional devices are accessible. In this article, we have reviewed the latest developments of tungsten oxide-based nanostructured materials in various kinds of applications, and our focus falls on their energy-related uses, especially supercapacitors, lithium ion batteries, electrochromic devices, and their bifunctional and multifunctional devices. Additionally, other applications such as photochromic devices, sensors, and photocatalysts of tungsten oxide-based materials have also been mentioned. We hope this article can shed light on the related applications of tungsten oxide-based materials and inspire new possibilities for further uses.
Collapse
Affiliation(s)
- Wenfang Han
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China;
- The Key Lab of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Qian Shi
- The Key Lab of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Renzong Hu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| |
Collapse
|
12
|
Gupta SP, Nishad HH, Chakane SD, Gosavi SW, Late DJ, Walke PS. Phase transformation in tungsten oxide nanoplates as a function of post-annealing temperature and its electrochemical influence on energy storage. NANOSCALE ADVANCES 2020; 2:4689-4701. [PMID: 36132928 PMCID: PMC9416815 DOI: 10.1039/d0na00423e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/05/2020] [Indexed: 05/27/2023]
Abstract
The morphology and crystal structure of electrode materials have an enormous impact on their electrochemical properties for employment in supercapacitors for various applications. In this study, the transformations of the crystal structure of WO3·H2O nanoplates were conducted by post-annealing at 200 °C and 400 °C. The morphological and structural evolution of the electrodes was studied via FEG-SEM, HRTEM, FTIR, XRD, and Raman spectroscopy. The phase transition and enhanced degree of crystallinity were observed with increasing temperature. The orthorhombic structures of the hydrate WO3·H2O (W80), the mixed-phase with mesoporous structure (W200), and finally the monoclinic phase of WO3 structures (W400) were achieved at annealing temperatures of 80 °C, 200 °C, and 400 °C respectively. The electrochemical performance of electrode W200 showed the highest specific capacitance of 606 F g-1 as compared to electrode W80 (361 F g-1), and was two-fold greater than electrode W400 (302 F g-1) at a current density of 1 A g-1. Moreover, electrode W200 exhibited excellent cyclic stability of 89% at an ultrahigh scan rate of 100 mV s-1 after 4000 cycles. The results highlight that the mixed-phase WO3 nanoplates would make a suitable electrode material for supercapacitors with desired electrochemical features.
Collapse
Affiliation(s)
- Shobhnath P Gupta
- National Centre for Nanoscience's and Nanotechnology, University of Mumbai Mumbai-400098 India +91 8380832183
| | - Harishchandra H Nishad
- National Centre for Nanoscience's and Nanotechnology, University of Mumbai Mumbai-400098 India +91 8380832183
| | - Sanjay D Chakane
- Department of Physics, Arts, Science and Commerce College Indapur, Affiliated to Savitribai Phule Pune University Pune-413106 India
| | - Suresh W Gosavi
- Department of Physics, Savitribai Phule Pune University Pune-411007 India
| | - Dattatray J Late
- Centre for Nanoscience and Nanotechnology, Amity University Mumbai-410206 India
| | - Pravin S Walke
- National Centre for Nanoscience's and Nanotechnology, University of Mumbai Mumbai-400098 India +91 8380832183
| |
Collapse
|
13
|
Gupta SP, Gosavi SW, Late DJ, Qiao Q, Walke PS. Temperature driven high-performance pseudocapacitor of carbon nano-onions supported urchin like structures of α-MnO2 nanorods. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136626] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|