1
|
Ren F, Lv T, Wang C, Du Y. NiTe 2-GE composite as a promoter of Pt for efficient methanol electro-oxidation. J Colloid Interface Sci 2025; 690:137343. [PMID: 40117885 DOI: 10.1016/j.jcis.2025.137343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/03/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025]
Abstract
Exploring oxophilic platinum (Pt) promoters is essential to address the significant challenges currently faced by direct methanol fuel cell technology. In this study, we developed a novel composite catalyst consisting of nickel telluride (NiTe2) and graphene (GE) supported platinum nanoparticles, which was applied to the methanol oxidation reaction (MOR) for the first time. Electrochemical tests demonstrated that the electrocatalytic performance of Pt for MOR can be markedly enhanced by using NiTe2-GE as a promoter. Specifically, the peak current density of Pt/NiTe2-GE reached 103.9 mA cm-2, significantly surpassing that of Pt/NiTe2 (27.1 mA cm-2) and Pt/GE (23.9 mA cm-2) catalysts, and it was also comparable to the commercial Pt/C catalyst (58.5 mA cm-2). Furthermore, Pt/NiTe2-GE exhibited superior catalytic stability, enhanced resistance to CO poisoning, and accelerated catalytic kinetics. This work reveals an effective strategy for the design of advanced anode catalysts for MOR.
Collapse
Affiliation(s)
- Fangfang Ren
- College of Chemical and Environmental Engineering and Instrumental Analysis Center, Yancheng Teachers University, Yancheng 224007, China.
| | - Tingyu Lv
- College of Chemical and Environmental Engineering and Instrumental Analysis Center, Yancheng Teachers University, Yancheng 224007, China
| | - Cheng Wang
- College of Chemical and Environmental Engineering and Instrumental Analysis Center, Yancheng Teachers University, Yancheng 224007, China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Yang P, Dong S, Shu Y, Wei X. Pt Nanoparticles on Multi-Walled Carbon Nanotubes with High CO Tolerance for Methanol Electrooxidation. Molecules 2024; 29:5015. [PMID: 39519656 PMCID: PMC11547461 DOI: 10.3390/molecules29215015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Anode catalysts are important for direct methanol fuel cells (DMFCs) of energy conversion. Herein, we report a novel strategy by ethylene glycol-based deep eutectic solvents (EG-DESs) for the fabrication of a multi-walled carbon nanotubes (MWCNTs)-supported Pt nanoparticles catalyst (referred to as Pt/CNTs-EG-DES). The Pt/CNTs-EG-DES catalyst provides an increased electrochemically active surface area (ECSA) and shows remarkably improved electrocatalytic performance towards methanol oxidation reaction compared to Pt/CNTs-W (fabricated in water) and commercial Pt/C catalysts. The improved performance is attributed to the generation of more Pt-O bonds which change the electronic states of the Pt atoms and the special node structure that obtains more active sites for a high CO resistance. This study suggests an effective synthesis strategy for Pt-based electrocatalysts with high performance for DMFC applications.
Collapse
Affiliation(s)
- Pingping Yang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418000, China; (P.Y.); (S.D.)
| | - Shiming Dong
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418000, China; (P.Y.); (S.D.)
| | - You Shu
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418000, China; (P.Y.); (S.D.)
| | | |
Collapse
|
3
|
Shiba S, Ogata A, Matsushita S, Niwa O, Kunitake M, Matsuguchi M, Komoda M, Nishina Y. Diverse Hierarchical Meso/Nanoporous Pt Film Electrocatalysts Prepared via Hydrogen Adsorption-Assisted Dynamic Soft Templating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16349-16360. [PMID: 39046223 DOI: 10.1021/acs.langmuir.4c01567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
In this study, we present an innovative approach for creating hierarchical meso/nanoporous Pt films using dynamic soft templating. The fabrication process, called dynamic soft templating, involves Pt electrodeposition within a specialized bicontinuous microemulsion (BME) system characterized by a sophisticated three-dimensional network comprising water and oil phases, surfactants, and cosurfactants. Pt electrodeposition exclusively occurs in the water phase of the BME. This results in a porous Pt film exhibiting a nanostructure mirroring the oil solution/water solution nanostructure (solution/solution structure) of the BME, the size of which can be tailored by adjusting the BME composition. Through a simultaneous interplay of Pt electrodeposition and overpotential deposition of hydrogen (H-OPD, dissociative adsorption of water), potential-dependent Pt mesostructures are dynamically shaped. As a result, we achieve diverse morphologies in the form of hierarchical meso/nanoporous Pt films. The potential applications of the films are evaluated as electrocatalysts for the methanol oxidation reaction (MOR), and it was found that the electrocatalytic performances seem to be sensitive to nanoporosity and not relevant to mesoporosity.
Collapse
Affiliation(s)
- Shunsuke Shiba
- Advanced Materials Research Laboratory, NiSiNa Materials Co. Ltd., 2-6-20-3, Kitagata, Kita-ku, Okayama 700-0803, Japan
| | - Ayano Ogata
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Shin Matsushita
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Osamu Niwa
- Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji, Fukaya, Saitama 369-0293, Japan
| | - Masashi Kunitake
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuou-ku, Kumamoto 860-8555, Japan
| | - Masanobu Matsuguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Masato Komoda
- The Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yuta Nishina
- The Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
4
|
Pt Nanoparticles Incorporated Znfe2o4 Nanoparticles Supported on Hollow Poly(aniline-co-pyrrole)/Chitosan as a Novel Catalyst for Methanol Oxidation. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02345-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Fan F, Chen DH, Yang L, Qi J, Fan Y, Wang Y, Chen W. PtCuFe alloy nanochains: Synthesis and composition-performance relationship in methanol oxidation and hydrogen evolution reactions. J Colloid Interface Sci 2022; 628:153-161. [PMID: 35987154 DOI: 10.1016/j.jcis.2022.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022]
Abstract
The controllable synthesis of 1-dimensional (1D) multi-metal Pt-based alloys, with enhanced electro-chemical properties remains a challenge, despite the wide application of Pt-based catalysts in fuel cells and in the hydrogen evolution reaction (HER). Herein, we fabricate PtCuFe alloy nanochains (NCs) that have a tunable composition by flexibly adjusting the molar ratios of the metal precursors. It was found that Cu2+ is key in the formation of 1D NCs, as confirmed by transmission electron microscopy characterizations. In addition, the alloyed Fe can further increase the content of the metallic state of Cu in the PtCuFe NCs. The as-prepared PtCuFe NCs exhibited higher catalytic activity and stability than those of the Pt nanoparticles (NPs), PtFe NPs, and PtCu NCs, for the methanol oxidation reaction (MOR) and HER. Additionally, the composition-performance relationship of PtCuxFey NCs toward the MOR and HER were investigated. The hybrid density functional theory calculation and analysis showed that the 1D PtCuFe NCs have a lower lowest unoccupied molecular orbital (LUMO) than those of the 2- and 3-dimensional PtCuFe, verifying that the 1D PtCuFe NCs exhibit the highest activity for the MOR. This work has established a new method for the controllable synthesis of multi-metal Pt-based NCs/alloy catalysts and their subsequent applications in other electro-catalytic reactions.
Collapse
Affiliation(s)
- Fangfang Fan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Du-Hong Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Linjuan Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jiuhui Qi
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Youjun Fan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Yixuan Wang
- Department of Chemistry and Forensic Science, Albany State University, Albany, GA 31705, USA.
| | - Wei Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
6
|
Gontrani L, Tagliatesta P, Donia DT, Bauer EM, Bonomo M, Carbone M. Recent Advances in the Synthesis of Inorganic Materials Using Environmentally Friendly Media. Molecules 2022; 27:2045. [PMID: 35408444 PMCID: PMC9000861 DOI: 10.3390/molecules27072045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/28/2022] Open
Abstract
Deep Eutectic Solvents have gained a lot of attention in the last few years because of their vast applicability in a large number of technological processes, the simplicity of their preparation and their high biocompatibility and harmlessness. One of the fields where DES prove to be particularly valuable is the synthesis and modification of inorganic materials-in particular, nanoparticles. In this field, the inherent structural inhomogeneity of DES results in a marked templating effect, which has led to an increasing number of studies focusing on exploiting these new reaction media to prepare nanomaterials. This review aims to provide a summary of the numerous and most recent achievements made in this area, reporting several examples of the newest mixtures obtained by mixing molecules originating from natural feedstocks, as well as linking them to the more consolidated methods that use "classical" DES, such as reline.
Collapse
Affiliation(s)
- Lorenzo Gontrani
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
- Department of Chemistry, University of Rome “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| | - Pietro Tagliatesta
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Domenica Tommasa Donia
- Department of Surgical Science, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Elvira Maria Bauer
- Italian National Research Council-Institute of Structure of Matter (CNR-ISM), Via Salaria km 29.3, 00015 Monterotondo, Italy;
| | - Matteo Bonomo
- Department of Chemistry, University of Rome “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
- Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy;
| | - Marilena Carbone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| |
Collapse
|
7
|
Electrocatalytic oxidation of formic acid on Pd/CNTs nanocatalysts synthesized in special “non-aqueous” system. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Seitkalieva MM, Samoylenko DE, Lotsman KA, Rodygin KS, Ananikov VP. Metal nanoparticles in ionic liquids: Synthesis and catalytic applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213982] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Ravichandran S, Bhuvanendran N, Xu Q, Maiyalagan T, Su H. Improved methanol electrooxidation catalyzed by ordered mesoporous Pt-Ru-Ir alloy nanostructures with trace Ir content. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Yang P, Zhou Z, Zheng T, Gu C, Gong X, Zhang Y, Xie Y, Yang N, Fei J. A novel strategy to synthesize Pt/CNTs nanocatalyst with highly improved activity for methanol electrooxidation. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Wang Z, Wang L, Zhu W, Zeng T, Wu W, Lei Z, Tan Y, Lv H, Cheng N. Pt 3Sn nanoparticles enriched with SnO 2/Pt 3Sn interfaces for highly efficient alcohol electrooxidation. NANOSCALE ADVANCES 2021; 3:5062-5067. [PMID: 36132342 PMCID: PMC9419862 DOI: 10.1039/d1na00314c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/02/2021] [Indexed: 06/15/2023]
Abstract
Pt3Sn nanoparticles (NPs) enriched with Pt3Sn/ultra-small SnO2 interfaces (Pt3Sn@u-SnO2/NG) were synthesized through a thermal treatment of Pt2Sn/NG in a H2 atmosphere, followed by annealing under H2 and air conditions. The unique structure of Pt3Sn NPs enriched with Pt3Sn/SnO2 interfaces was observed on the Pt3Sn@u-SnO2/NG catalyst based on HRTEM. The optimized Pt3Sn@u-SnO2/NG catalyst achieves high catalytic activity with an ethanol oxidation reaction (EOR) activity of 366 mA mgPt -1 and a methanol oxidation reaction (MOR) activity of 503 mA mgPt -1 at the potential of 0.7 V, which are eight-fold and five-fold higher than those for the commercial Pt/C catalyst (44 and 99 mA mgPt -1, respectively). The Pt3Sn@u-SnO2/NG catalyst is found to be 3 times more stable and have higher CO tolerance than Pt/C. The outstanding performance of the Pt3Sn@u-SnO2/NG catalyst should be ascribed to the synergetic effect induced by the unique structure of Pt3Sn NPs enriched with Pt3Sn/SnO2 interfaces. The synergetic effect between Pt3Sn NPs and ultra-small SnO2 increases the performance for alcohol oxidation because the Sn in both Pt3Sn and SnO2 favors the removal of COads on the nearby Pt by providing OHads species at low potentials. The present work suggests that the Pt3Sn@u-SnO2 is indeed a unique kind of efficient electrocatalyst for alcohol electrooxidation.
Collapse
Affiliation(s)
- Zichen Wang
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 Fujian China
| | - Liang Wang
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 Fujian China
| | - Wangbin Zhu
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 Fujian China
| | - Tang Zeng
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 Fujian China
| | - Wei Wu
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 Fujian China
| | - Zhao Lei
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 Fujian China
| | - Yangyang Tan
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 Fujian China
| | - Haifeng Lv
- PEM Fuel Cell Catalyst Research and Development Center Shenzhen Guangdong 518057 China
- Materials Science Division, Argonne National Laboratory Argonne IL 60439 USA
| | - Niancai Cheng
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 Fujian China
| |
Collapse
|
12
|
Zhang T, Pan J, Yuan J, Fang K, Niu L. T porous PtIr bimetallic nanotubes with core shell structure for enhanced electrocatalysis on methanol oxidation. NANOTECHNOLOGY 2021; 32:365402. [PMID: 34038886 DOI: 10.1088/1361-6528/ac056a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Sluggish methanol oxidation brings challenges to the commercialization of the direct methanol fuel cells (DMFCs). Herein, porous PtIr bimetallic nanotubes were prepared via galvanic replacement using Ag nanowires as template. These PtIr catalysts show a core-shell nanostructure with a tunable Pt-rich surface. The mass activity of methanol oxidation reaction (MOR) at these porous PtIr nanotubes can reach up to 1.42 A mg-1based on Pt loading, which is better than the commercial Pt/C catalysts and can be comparable with most of one-dimensional Pt-based MOR catalysts reported recently. In addition, these PtIr catalysts can maintain structural integrity after long-term durability test. The superior catalytic performance of the novel porous PtIr nanotubes will make it possible used in the commercial DMFCs as advanced MOR catalysts at industrial scale.
Collapse
Affiliation(s)
- Tiantian Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Life Sciences and Chemistry, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China
| | - Jiao Pan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Life Sciences and Chemistry, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China
| | - Junhua Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Life Sciences and Chemistry, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, 437100, People's Republic of China
| | - Keming Fang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China
| | - Li Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, People's Republic of China
| |
Collapse
|
13
|
Vardanjani ST, Roosta A, Javanmardi J. Natural deep eutectic solvents for enhancing the solubility of two B vitamins in aqueous solutions: Experimental study and thermodynamic aspects. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|