1
|
Guo M, Ban T, Wang Y, Wang X, Zhu X. "Thiol-ene" crosslinked polybenzimidazoles anion exchange membrane with enhanced performance and durability. J Colloid Interface Sci 2023; 638:349-362. [PMID: 36746053 DOI: 10.1016/j.jcis.2023.01.137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
To address the "trade-off" between conductivity and stability of anion exchange membranes (AEMs), we developed a series of crosslinked AEMs by using polybenzimidazole with norbornene (cPBI-Nb) as backbone and the crosslinked structure was fabricated by adopting click chemical between thiol and vinyl-group. Meanwhile, the hydrophilic properties of the dithiol cross-linker were regulated to explore the effect for micro-phase separation morphology and hydroxide ion conductivity. As result, the AEMs with hydrophilic crosslinked structure (PcPBI-Nb-C2) not only had apparent micro-phase separation morphology and high OH- conductivity of 105.54 mS/cm at 80 °C, but also exhibited improved mechanical properties, dimensional stability (swelling ratio < 15%) and chemical stability (90.22 % mass maintaining in Fenton's reagent at 80 °C for 24 h, 78.30 % conductivity keeping in 2 M NaOH at 80 °C for 2016 h). In addition, the anion exchange membranes water electrolysis (AEMWEs) using PcPBI-Nb-C2 as AEMs achieved the current density of 368 mA/cm2 at 2.1 V and the durability over 500 min operated at 150 mA/cm2 under 60 °C. Therefore, this work paves the way for constructing AEMs by introduction of norbornene into polybenzimidazole and formation of hydrophilic crosslinked structure based on "thiol-ene".
Collapse
Affiliation(s)
- Maolian Guo
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian 116024, China
| | - Tao Ban
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian 116024, China
| | - Yajie Wang
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian 116024, China
| | - Xinxin Wang
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian 116024, China
| | - Xiuling Zhu
- State Key Lab of Fine Chemicals, Department of Polymer Science & Materials, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
2
|
Guan P, Zou Y, Zhang M, Zhong W, Xu J, Lei J, Ding H, Feng W, Liu F, Zhang Y. High-temperature low-humidity proton exchange membrane with "stream-reservoir" ionic channels for high-power-density fuel cells. SCIENCE ADVANCES 2023; 9:eadh1386. [PMID: 37126562 PMCID: PMC10132749 DOI: 10.1126/sciadv.adh1386] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The perfluorosulfonic acid (PFSA) proton exchange membrane (PEM) is the key component for hydrogen fuel cells (FCs). We used in situ synchrotron scattering to investigate the PEM morphology evolution and found a "stream-reservoir" morphology, which enables efficient proton transport. The short-side-chain (SSC) PFSA PEM is fabricated under the guidance of morphology optimization, which delivered a proton conductivity of 193 milliSiemens per centimeter [95% relativity humidity (RH)] and 40 milliSiemens per centimeter (40% RH) at 80°C. The improved glass transition temperature, water permeability, and mechanical strength enable high-temperature low-humidity FC applications. Performance improvement by 82.3% at 110°C and 25% RH is obtained for SSC-PFSA PEM FCs compared to Nafion polymer PEM devices. The insights in chain conformation, packing mechanism, crystallization, and phase separation of PFSAs build up the structure-property relationship. In addition, SSC-PFSA PEM is ideal for high-temperature low-humidity FCs that are needed urgently for high-power-density and heavy-duty applications.
Collapse
Affiliation(s)
- Panpan Guan
- Frontiers Science Center for Transformative Molecules and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yecheng Zou
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo, Shandong 256401, P. R. China
| | - Ming Zhang
- Frontiers Science Center for Transformative Molecules and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wenkai Zhong
- Frontiers Science Center for Transformative Molecules and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jinqiu Xu
- Frontiers Science Center for Transformative Molecules and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jianlong Lei
- Frontiers Science Center for Transformative Molecules and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Han Ding
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo, Shandong 256401, P. R. China
| | - Wei Feng
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo, Shandong 256401, P. R. China
| | - Feng Liu
- Frontiers Science Center for Transformative Molecules and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yongming Zhang
- Frontiers Science Center for Transformative Molecules and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
3
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 329] [Impact Index Per Article: 109.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
4
|
Chen X, Niu K, Xue Z, Liu X, Liu B, Zhang B, Zeng H, Lv W, Zhang Y, Wu Y. Ultrafine platinum nanoparticles supported on N,S-codoped porous carbon nanofibers as efficient multifunctional materials for noticeable oxygen reduction reaction and water splitting performance. NANOSCALE ADVANCES 2022; 4:1639-1648. [PMID: 36134368 PMCID: PMC9417137 DOI: 10.1039/d2na00014h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/11/2022] [Indexed: 05/30/2023]
Abstract
The design of highly active, stable and durable platinum-based electrocatalysts towards the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and hydrogen adsorption has a high and urgent demand in fuel cells, water splitting and hydrogen storage. Herein, ultrafine platinum nanoparticles (Pt NPs) supported on N,S-codoped porous carbon nanofibers (Pt-N,S-pCNFs) hybrids were prepared through the electrospinning method coupled with hydrothermal and carbonation processes. The ultrafine Pt NPs are sufficiently dispersed and loaded on pCNFs and codoped with N and S, which can improve oxygen adsorption, afford more active sites, and greatly enhance electron mobility. The Pt-N,S-pCNFs hybrid achieves excellent activity and stability for ORR with ∼70 mV positive shift of onset potential compared to the commercial Pt/C-20 wt% electrocatalyst. The long-term catalytic durability with 89.5% current retention after a 10 000 s test indicates its remarkable ORR behavior. Pt-N,S-pCNFs also exhibits excellent HER and OER performance, and can be used as an efficient catalyst for water splitting. In addition, Pt-N,S-pCNFs exhibits an excellent hydrogen storage capacity of 0.76 wt% at 20 °C and 10 MPa. This work provides novel design strategies for the development of multifunctional materials as high-performance ORR catalysts, water splitting electrocatalysts and hydrogen storage materials.
Collapse
Affiliation(s)
- Xiaohong Chen
- Institute of Advanced Materials, North China Electric Power University Beijing
| | - Kai Niu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University No. 800 Dongchuan Rd. Minhang District Shanghai 200240 China
| | - Zhiyong Xue
- Institute of Advanced Materials, North China Electric Power University Beijing
| | - Xundao Liu
- School of Materials Science and Engineering, University of Jinan Jinan 250022 China
| | - Bogu Liu
- Institute of Advanced Materials, North China Electric Power University Beijing
| | - Bao Zhang
- Institute of Advanced Materials, North China Electric Power University Beijing
| | - Hong Zeng
- Institute of Advanced Materials, North China Electric Power University Beijing
| | - Wei Lv
- Institute of Advanced Materials, North China Electric Power University Beijing
| | - Yongming Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University No. 800 Dongchuan Rd. Minhang District Shanghai 200240 China
| | - Ying Wu
- Institute of Advanced Materials, North China Electric Power University Beijing
| |
Collapse
|
5
|
Yang Q, Sun LX, Gao WT, Zhu ZY, Gao X, Zhang QG, Zhu AM, Liu QL. Crown ether-based anion exchange membranes with highly efficient dual ion conducting pathways. J Colloid Interface Sci 2021; 604:492-499. [PMID: 34274712 DOI: 10.1016/j.jcis.2021.07.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 11/30/2022]
Abstract
Anion exchange membranes (AEMs) are a crucial constituent for alkaline fuel cells. As the core component of fuel cells, the low performance AEMs restrict the development and application of the fuel cells. Herein, the trade-off between the OH- conductivity and dimensional stability was solved by constructing AEMs with adequate OH- conductivity and satisfactory alkali resistance using Tröger's base (TB) poly (crown ether)s (PCEs) as the main chain, the embedded quaternary ammonium (QA) and Na+-functionalized crown ether units as the cationic group. Crown ether is an electron donator, and can capture Na+ to form Na+-functionalized crown ether units to conveniently transfer OH- and significantly promote the alkaline stability of the AEMs. The influence of the Na+-functionalized crown ether units on the performance of AEMs was studied in detail. The PCEs based AEMs show an obvious hydrophobic-hydrophilic microphase separation. These features make them ideal platforms for the OH- conduction applications. As expected, the as-prepared PCEs-QA-100% (100% is the degree of cross-linking) AEM with an ionic exchange capacity (IEC) of 2.07 meq g-1 has a high OH- conductivity of 159 mS cm-1 at 80 °C. Furthermore, the membrane electrode assemblies fabricated using the PCEs-QA-100% AEM possess a maximum power density of 291 mW cm-2 under the current density of 500 mA cm-2.
Collapse
Affiliation(s)
- Q Yang
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - L X Sun
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - W T Gao
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Z Y Zhu
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - X Gao
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Q G Zhang
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - A M Zhu
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Q L Liu
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
6
|
Lei J, Chen X, Liu X, Feng W, Zhang J, Li H, Zhang Y. Under-brine superaerophobic perfluorinated ion exchange membrane with re-entrant superficial microstructures for high energy efficiency of NaCl aqueous solution electrolysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Chen X, Xue Z, Niu K, Liu X, Wei Lv, Zhang B, Li Z, Zeng H, Ren Y, Wu Y, Zhang Y. Li-fluorine codoped electrospun carbon nanofibers for enhanced hydrogen storage. RSC Adv 2021; 11:4053-4061. [PMID: 35424329 PMCID: PMC8694184 DOI: 10.1039/d0ra06500e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/14/2020] [Indexed: 11/27/2022] Open
Abstract
Carbon materials have attracted increasing attention for hydrogen storage due to their great specific surface areas, low weights, and excellent mechanical properties. However, the performance of carbon materials for hydrogen absorption is hindered by weak physisorption. To improve the hydrogen absorption performance of carbon materials, nanoporous structures, doped heteroatoms, and decorated metal nanoparticles, among other strategies, are adopted to increase the specific surface area, number of hydrogen storage sites, and metal catalytic activity. Herein, Li–fluorine codoped porous carbon nanofibers (Li–F–PCNFs) were synthesized to enhance hydrogen storage performance. Especially, perfluorinated sulfonic acid (PFSA) polymers not only served as a fluorine precursor, but also inhibited the agglomeration of lithium nanoparticles during the carbonization process. Li–F–PCNFs showed an excellent hydrogen storage capacity, up to 2.4 wt% at 0 °C and 10 MPa, which is almost 24 times higher than that of the pure porous carbon nanofibers. It is noted that the high electronegativity gap between fluorine and lithium facilitates the electrons of the hydrogen molecules being attracted to the PCNFs, which enhanced the hydrogen adsorption capacity. In addition, Li–F–PCNFs may have huge potential for application in fuel cells. We developed a facile, yet general, approach for preparing Li–fluorine codoped porous carbon nanofiber (Li–F–PCNF) composites, which showed excellent hydrogen storage performance.![]()
Collapse
Affiliation(s)
- Xiaohong Chen
- Institute of Advanced Materials, North China Electric Power University Beijing China
| | - Zhiyong Xue
- Institute of Advanced Materials, North China Electric Power University Beijing China
| | - Kai Niu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University No. 800 Dongchuan Rd., Minhang District Shanghai 200240 China
| | - Xundao Liu
- School of Materials Science and Engineering, University of Jinan Jinan 250022 China
| | - Wei Lv
- Institute of Advanced Materials, North China Electric Power University Beijing China
| | - Bao Zhang
- Institute of Advanced Materials, North China Electric Power University Beijing China
| | - Zhongyu Li
- Institute of Advanced Materials, North China Electric Power University Beijing China
| | - Hong Zeng
- Institute of Advanced Materials, North China Electric Power University Beijing China
| | - Yu Ren
- Institute of Advanced Materials, North China Electric Power University Beijing China
| | - Ying Wu
- Institute of Advanced Materials, North China Electric Power University Beijing China
| | - Yongming Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University No. 800 Dongchuan Rd., Minhang District Shanghai 200240 China
| |
Collapse
|
8
|
Chen X, Xue Z, Zheng Y, Liu X, Zhang Y. Uniformly dispersed platinum nanoparticles over nitrogen-doped reduced graphene oxide as an efficient electrocatalyst for the oxygen reduction reaction. RSC Adv 2021; 11:34125-34131. [PMID: 35497304 PMCID: PMC9042399 DOI: 10.1039/d1ra04857k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022] Open
Abstract
Oxygen reduction reaction (ORR) with efficient activity and stability is significant for fuel cells. Herein, platinum (Pt) nanoparticles dispersed on nitrogen-doped reduced graphene oxide (N-rGO) were prepared by a hydrothermal and carbonized approach for the electrocatalysis of ORR. Polyvinylpyrrolidone plays a significant role in the reduction and dispersion of platinum particles (about 2 nm). The obtained Pt–N-rGO hybrids exhibited superior activity with an electron transfer number of ∼4.0, onset potential 0.90 eV of ORR, good stability and methanol tolerance in alkaline media. These results reveal the interactions between Pt–N-rGO and oxygen molecules, which may represent an oxygen modified growth in catalyst preparation. The excellent electrocatalysis may lead to the decreased consumption of expensive Pt and open up new opportunities for applications in lithium air batteries. We developed a facile, yet general approach to prepare ultrafine Pt nanoparticles loaded on N-doped reduced graphene (Pt–N-rGO) composites, which showed excellent oxygen reduction reaction performance.![]()
Collapse
Affiliation(s)
- Xiaohong Chen
- Institute for Advanced Materials, North China Electric Power University, Beijing, China
| | - Zhiyong Xue
- Institute for Advanced Materials, North China Electric Power University, Beijing, China
| | - Yafei Zheng
- Institute for Advanced Materials, North China Electric Power University, Beijing, China
| | - Xundao Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Yongming Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai 200240, China
| |
Collapse
|
9
|
Liu X, Luo X, Chen X, Zou S, Liu X, Li J, Li H, Dong D. Perfluorinated membrane electrode assembly containing metal-free-catalyst cathode for anion exchange membrane fuel cells. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|