1
|
Yu Z, Zhao Y, Xie Y. Ensuring food safety by artificial intelligence-enhanced nanosensor arrays. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:139-178. [PMID: 39103212 DOI: 10.1016/bs.afnr.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Current analytical methods utilized for food safety inspection requires improvement in terms of their cost-efficiency, speed of detection, and ease of use. Sensor array technology has emerged as a food safety assessment method that applies multiple cross-reactive sensors to identify specific targets via pattern recognition. When the sensor arrays are fabricated with nanomaterials, the binding affinity of analytes to the sensors and the response of sensor arrays can be remarkably enhanced, thereby making the detection process more rapid, sensitive, and accurate. Data analysis is vital in converting the signals from sensor arrays into meaningful information regarding the analytes. As the sensor arrays can generate complex, high-dimensional data in response to analytes, they require the use of machine learning algorithms to reduce the dimensionality of the data to gain more reliable outcomes. Moreover, the advances in handheld smart devices have made it easier to read and analyze the sensor array signals, with the advantages of convenience, portability, and efficiency. While facing some challenges, the integration of artificial intelligence with nanosensor arrays holds promise for enhancing food safety monitoring.
Collapse
Affiliation(s)
- Zhilong Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, P.R. China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China.
| | - Yali Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, P.R. China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, P.R. China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|
2
|
Li Y, Ren Y, Yi Z, Han S, Liu S, Long F, Zhu A. Detection of SARS-CoV-2 S protein based on FRET between carbon quantum dots and gold nanoparticles. Heliyon 2023; 9:e22674. [PMID: 38034625 PMCID: PMC10687278 DOI: 10.1016/j.heliyon.2023.e22674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 virus brings nasty crisis for public health in the world. Until now, the virus has caused multiple infections in many people. Detecting antigen to SARS-CoV-2 is a powerful method for the diagnosis of COVID-19 and is helpful for controlling and stopping the pandemic. Herein, a rapid and quantitative detection method of SARS-CoV-2 spike(S) protein was built based on the fluorescence resonance energy transfer (FRET) phenomenon without complicated steps. In the process of detecting, the carbon quantum dots (CQDs) and gold nanoparticles (AuNPs) act as donor and acceptor. By modifying the SARS-CoV-2 antibodies on the surface of CQDs and AuNPs, we achieved S protein specific detection using the distance-based FRET phenomenon. Through the electric charge regulation, the limit of detection (LOD) is 0.05 ng/mL, the linear range is 0.1-100 ng/mL, and the detection process only takes 12 min. The proposed method exhibits several advantages such as be available for variants (B.1.1.529 and B.1.617.2) and be suitable for human serum, which is of significance for detecting viral in time and prevention the viral transmission.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yashuang Ren
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhihao Yi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Shitong Han
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Shilei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Anna Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| |
Collapse
|
3
|
Benedet M, Gallo A, Maccato C, Rizzi GA, Barreca D, Lebedev OI, Modin E, McGlynn R, Mariotti D, Gasparotto A. Controllable Anchoring of Graphitic Carbon Nitride on MnO 2 Nanoarchitectures for Oxygen Evolution Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47368-47380. [PMID: 37769189 PMCID: PMC10571007 DOI: 10.1021/acsami.3c09363] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023]
Abstract
The design and fabrication of eco-friendly and cost-effective (photo)electrocatalysts for the oxygen evolution reaction (OER) is a key research goal for a proper management of water splitting to address the global energy crisis. In this work, we focus on the preparation of supported MnO2/graphitic carbon nitride (g-CN) OER (photo)electrocatalysts by means of a novel preparation strategy. The proposed route consists of the plasma enhanced-chemical vapor deposition (PE-CVD) of MnO2 nanoarchitectures on porous Ni scaffolds, the anchoring of controllable g-CN amounts by an amenable electrophoretic deposition (EPD) process, and the ultimate thermal treatment in air. The inherent method versatility and flexibility afforded defective MnO2/g-CN nanoarchitectures, featuring a g-CN content and nano-organization tunable as a function of EPD duration and the used carbon nitride precursor. Such a modulation had a direct influence on OER functional performances, which, for the best composite system, corresponded to an overpotential of 430 mV at 10 mA/cm2, a Tafel slope of ≈70 mV/dec, and a turnover frequency of 6.52 × 10-3 s-1, accompanied by a very good time stability. The present outcomes, comparing favorably with previous results on analogous systems, were rationalized on the basis of the formation of type-II MnO2/g-CN heterojunctions, and yield valuable insights into this class of green (photo)electrocatalysts for end uses in solar-to-fuel conversion and water treatment.
Collapse
Affiliation(s)
- Mattia Benedet
- Department
of Chemical Sciences, Padova University
and INSTM, 35131 Padova, Italy
- CNR-ICMATE
and INSTM, Department of Chemical Sciences, Padova University, 35131 Padova, Italy
| | - Andrea Gallo
- Department
of Chemical Sciences, Padova University
and INSTM, 35131 Padova, Italy
| | - Chiara Maccato
- Department
of Chemical Sciences, Padova University
and INSTM, 35131 Padova, Italy
- CNR-ICMATE
and INSTM, Department of Chemical Sciences, Padova University, 35131 Padova, Italy
| | - Gian Andrea Rizzi
- Department
of Chemical Sciences, Padova University
and INSTM, 35131 Padova, Italy
- CNR-ICMATE
and INSTM, Department of Chemical Sciences, Padova University, 35131 Padova, Italy
| | - Davide Barreca
- CNR-ICMATE
and INSTM, Department of Chemical Sciences, Padova University, 35131 Padova, Italy
| | - Oleg I. Lebedev
- Laboratoire
CRISMAT, UMR 6508 CNRS/ENSICAEN/UCBN, 14050 Caen Cedex 4, France
| | - Evgeny Modin
- CIC
nanoGUNE BRTA, Donostia, 20018 San Sebastian, Spain
| | - Ruairi McGlynn
- School
of Engineering, Ulster University, 2-24 York Street, Belfast BT15 1AP, Northern Ireland
| | - Davide Mariotti
- School
of Engineering, Ulster University, 2-24 York Street, Belfast BT15 1AP, Northern Ireland
| | - Alberto Gasparotto
- Department
of Chemical Sciences, Padova University
and INSTM, 35131 Padova, Italy
- CNR-ICMATE
and INSTM, Department of Chemical Sciences, Padova University, 35131 Padova, Italy
| |
Collapse
|
4
|
Jiang W, Wang W, Shi H, Hu R, Hong J, Tong Y, Ma J, Jing Liang C, Peng J, Xu Z. Homogeneous regulation of arranged polymorphic manganese dioxide nanocrystals as cathode materials for high-performance zinc-ion batteries. J Colloid Interface Sci 2023; 647:124-133. [PMID: 37247476 DOI: 10.1016/j.jcis.2023.05.148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Rechargeable aqueous zinc-ion batteries have emerged as attractive energy storage devices by virtue of their low cost, high safety and eco-friendliness. However, zinc-ion cathodes are bottlenecked by their vulnerable crystal structures in the process of zinc embedding and significant capacity fading during long-term cycling. Herein, we report the rational and homogeneous regulation of polycrystalline manganese dioxide (MnO2) nanocrystals as zinc cathodes via a surfactant template-assisted strategy. Benefiting from the homogeneous regulation, MnO2 nanocrystals with an ordered crystal arrangement, including nanorod-like polyvinylpyrrolidone-manganese dioxide (PVP-MnO2), nanowire-like sodium dodecyl benzene sulfonate-manganese dioxide and nanodot-like cetyltrimethylammonium bromide-manganese dioxide, are obtained. Among these, the nanorod-like PVP-MnO2 nanocrystals exhibit stable long-life cycling of 210 mAh g-1 over 180 cycles at a high rate of 0.3 A g-1 and with a high capacity retention of 84% over 850 cycles at a high rate of 1 A g-1. The good performance of this cathode significantly results from the facile charge and mass transfer at the interface between the electrode and electrolyte, featuring the crystal stability and uniform morphology of the arranged MnO2 nanocrystals. This work provides crucial insights into the development of advanced MnO2 cathodes for low-cost and high-performance rechargeable aqueous zinc-ion batteries.
Collapse
Affiliation(s)
- Wanwei Jiang
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Jiangsu 226007, China.
| | - Wei Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Haiting Shi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Renzong Hu
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510640, China.
| | - Jie Hong
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Jiangsu 226007, China
| | - Yun Tong
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Jiangsu 226007, China
| | - Jun Ma
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Jiangsu 226007, China
| | - Cheng Jing Liang
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Jiangsu 226007, China
| | - Jingfu Peng
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Jiangsu 226007, China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
5
|
Tian L, Chen Z, Wang T, Cao M, Lu X, Cheng W, He C, Wang J, Li Z. Mo doping and Se vacancy engineering for boosting electrocatalytic water oxidation by regulating the electronic structure of self-supported Co 9Se 8@NiSe. NANOSCALE 2022; 15:259-265. [PMID: 36477799 DOI: 10.1039/d2nr05410h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Oxygen evolution reactions (OERs) are regarded as the rate-determining step of electrocatalytic overall water splitting, which endow OER electrocatalysts with the advantages of high activity, low cost, good conductivity, and excellent stability. Herein, a facile H2O2-assisted etching method is proposed for the fabrication of Mo-doped ultrathin Co9Se8@NiSe/NF-X heterojunctions with rich Se vacancies to boost electrocatalytic water oxidation. After step-by-step electronic structure modulation by Mo doping and Se vacancy engineering, the self-standing Mo-Co9Se8@NiSe/NF-60 heterojunctions deliver a current density of 50 mA cm-2 with an overpotential of 343 mV and a cell voltage of only 1.87 V at 50 mA cm-2 for overall water splitting in 1.0 M KOH. Our study opens up the possibility of realizing step-by-step electronic structure modulation of nonprecious OER electrocatalysts via heteroatom doping and vacancy engineering.
Collapse
Affiliation(s)
- Lin Tian
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yili 835000, China
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, School of Chemistry and Environmental Science, Yili Normal University, Yili 835000, China
| | - Zhenyang Chen
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Tingjian Wang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Ming Cao
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Xinhua Lu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Wenjing Cheng
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yili 835000, China
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, School of Chemistry and Environmental Science, Yili Normal University, Yili 835000, China
| | - Changchun He
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Ju Wang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| |
Collapse
|
6
|
Catalytic electrodes for the oxygen reduction reaction based on co-doped (B-N, Si-N, S-N) carbon quantum dots and anion exchange ionomer. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Yu Zheng J, Ling Zhou K, Kang Zhao W, Wang Y, He J, Wang X, Wang H, Yan H, Bao Han C. Enhanced the synergistic degradation effect between active hydroxyl and reactive oxygen species for indoor formaldehyde based on platinum atoms modified MnOOH/MnO 2 catalyst. J Colloid Interface Sci 2022; 628:359-370. [PMID: 35998461 DOI: 10.1016/j.jcis.2022.08.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
Abstract
Maintaining high activity during prolonged catalysis is always the pursuit in catalytic degradation of organic pollutants. For indoor formaldehyde (HCHO) degradation, the accumulation of intermediates is the major factor limiting the conversion of HCHO to final product CO2 (HCHO-to-CO2 conversion) and long-lasting catalysis. Herein, a three-dimensional radialized nanostructure catalyst self-assembled by MnOOH/MnO2 nanosheets anchored with Pt single atoms (PtSA-MnOOH/MnO2 with a trace platinum loading amount of 0.09%) is developed by thermally assisted two-step electrochemical method, which achieves enhanced CO2 production in catalytic HCHO degradation at the room temperature by the collaborative action of active hydroxyl (OH*) and active oxygen species (O2*). By boosting intermediates' decomposing, the catalyst implements real-time HCHO-to-CO2 conversion (∼85.7%) and long-term continuous HCHO removal (∼98%) during 100 h in a 15 ppm HCHO atmosphere at 25 °C under a weight hourly space velocity of 30000 mL/gcat∙h. Density functional theory calculation shows that the formation energy of O2* from O2 over PtSA-MnOOH/MnO2 is nearly half lower than that over Pt-MnO2 catalyst. And decomposing accumulated intermediates gives the credit to OH* species sustainably generated by the combined action of MnOOH and O2*. The synergistic action between PtSA and MnOOH contributes to the continuous production of O2* and OH* for enhancing CO2 production in indoor catalytic formaldehyde degradation.
Collapse
Affiliation(s)
- Jia Yu Zheng
- The Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Kai Ling Zhou
- The Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Wen Kang Zhao
- The Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Yueshuai Wang
- The Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Junda He
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Xinxin Wang
- The Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Hao Wang
- The Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Hui Yan
- The Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Chang Bao Han
- The Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China.
| |
Collapse
|
8
|
Local photothermal and photoelectric effect synergistically boost hollow CeO2/CoS2 heterostructure electrocatalytic oxygen evolution reaction. J Colloid Interface Sci 2022; 628:663-672. [DOI: 10.1016/j.jcis.2022.07.125] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022]
|
9
|
Li Z, Xu X, Lu X, He C, Huang J, Sun W, Tian L. Synergistic coupling of FeNi3 alloy with graphene carbon dots for advanced oxygen evolution reaction electrocatalysis. J Colloid Interface Sci 2022; 615:273-281. [DOI: 10.1016/j.jcis.2022.01.088] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
|
10
|
Phuakkhaw D, Amonpattaratkit P, Klysubun W, Saiwattanasuk P, Midpanon S, Porntheeraphat S, Klamchuen A, Wongchaisuwat A, Sagawa T, Viravathana P. Cu‐ and Fe‐Incorporated Manganese Oxides (Mn
x
O
y
) as Cathodic Catalysts for Hydrogen Peroxide Reduction (HPR) and Oxygen Reduction (OR) in Micro‐direct Methanol Fuel Cells. ChemElectroChem 2022. [DOI: 10.1002/celc.202200120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Duangkamon Phuakkhaw
- Department of Chemistry Kasetsart University 50 Ngamwongwan Rd, Chatuchak 10900 Bangkok Thailand
- Center of Excellence on Petrochemical and Materials Technology 7th floor Chulalongkorn University Research Building, Soi Chula 12, Phayathai Rd 10330 Bangkok Thailand
| | - Penphitcha Amonpattaratkit
- Synchrotron Light Research Institute 111 University Avenue, Muang District 30000 Nakhon Ratchasima Thailand
| | - Wantana Klysubun
- Synchrotron Light Research Institute 111 University Avenue, Muang District 30000 Nakhon Ratchasima Thailand
| | - Patraporn Saiwattanasuk
- Department of Chemistry Kasetsart University 50 Ngamwongwan Rd, Chatuchak 10900 Bangkok Thailand
| | - Supatta Midpanon
- Department of Chemistry Kasetsart University 50 Ngamwongwan Rd, Chatuchak 10900 Bangkok Thailand
| | - Supanit Porntheeraphat
- National Electronics and Computer Technology Center National Science and Technology Development Agency Phahonyothin Rd, Khlong Nueng 12120 Klong Luang Pathum Thani Thailand
| | - Annop Klamchuen
- National Nanotechnology Center National Science and Technology Development Agency Phahonyothin Rd, Khlong Nueng 12120 Klong Luang Pathum Thani Thailand
| | - Atchana Wongchaisuwat
- Department of Chemistry Kasetsart University 50 Ngamwongwan Rd, Chatuchak 10900 Bangkok Thailand
| | - Takashi Sagawa
- Quantum Energy Processes Department of Fundamental Energy Science Graduate School of Energy Science Kyoto University Yoshida-Honmachi, Sakyo-ku 606-8501 Kyoto Japan
| | - Pinsuda Viravathana
- Department of Chemistry Kasetsart University 50 Ngamwongwan Rd, Chatuchak 10900 Bangkok Thailand
- Center of Excellence on Petrochemical and Materials Technology 7th floor Chulalongkorn University Research Building, Soi Chula 12, Phayathai Rd 10330 Bangkok Thailand
- Center of Advanced Studies in Tropical Natural Resources Kasetsart University 50 Ngamwongwan Rd, Chatuchak 10900 Bangkok Thailand
| |
Collapse
|
11
|
Cheng W, Sun L, He X, Tian L. Recent advances in fuel cell reaction electrocatalysis based on porous noble metal nanocatalysts. Dalton Trans 2022; 51:7763-7774. [PMID: 35508098 DOI: 10.1039/d2dt00841f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
As the center of fuel cells, electrocatalysts play a crucial role in determining the conversion efficiency from chemical energy to electrical energy. Therefore, the development of advanced electrocatalysts with both high activity and stability is significant but challenging. Active site, mass transport, and charge transfer are three central factors influencing the catalytic performance of electrocatalysts. Endowed with rich available surface active sites, facilitated electron transfer and mass diffusion channels, and highly active components, porous noble metal nanomaterials are widely considered as promising electrocatalysts toward fuel cell-related reactions. The past decade has witnessed great achievements in the design and fabrication of advanced porous noble metal nanocatalysts in the field of electrocatalytic fuel oxidation reaction (FOR) and oxygen reduction reaction (ORR). Herein, the recent research advances regarding porous noble metal nanocatalysts for fuel cell-related reactions are reviewed. In the discussions, the inherent structural features of porous noble metal nanostructures for electrocatalytic reactions, advanced synthetic strategies for the fabrication of porous noble metal nanostructures, and the structure-performance relationships are also provided.
Collapse
Affiliation(s)
- Wenjing Cheng
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China. .,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Limei Sun
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Xiaoyan He
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China.
| | - Lin Tian
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China. .,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| |
Collapse
|
12
|
Li Z, Liu D, Lu X, Du M, Chen Z, Teng J, Sha R, Tian L. Boosting oxygen evolution of layered double hydroxide through electronic coupling with ultralow noble metal doping. Dalton Trans 2022; 51:1527-1532. [PMID: 34989735 DOI: 10.1039/d1dt03906g] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Electrocatalytic water oxidation is a rate-determining step in the water splitting process; however, its efficiency is significantly hampered by the limitations of cost-effective electrocatalysts. Here, an advanced Co(OH)2 electrocatalyst with ultralow iridium (Ir) doping is developed to enable outstanding oxygen evolution reaction (OER) properties; that is, in a 1 M KOH medium, an overpotential of only 262 mV is required to achieve a current density of 10 mA cm-2, and a small Tafel slope of 66.9 mV dec-1 is achieved, which is markedly superior to that of the commercial IrO2 catalyst (301 mV@10 mA cm-2; 66.9 mV dec-1). Through the combination of experimental data and a mechanism study, it is disclosed that the high intrinsic OER activity results from the synergistic electron coupling of oxidized Ir and Co(OH)2, which significantly moderate the adsorption energy of the intermediates. Moreover, we have also synthesized Ru-Co(OH)2 nanosheets and demonstrated the universal syntheses of Ir-doped CoM (M = Ni, Fe, Mn, and Zn) layered double hydroxides (LDHs).
Collapse
Affiliation(s)
- Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221118, PR China.
| | - Dongsheng Liu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221118, PR China.
| | - Xinhua Lu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221118, PR China.
| | - Minglin Du
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221118, PR China.
| | - Zhenyang Chen
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221118, PR China.
| | - Jingrui Teng
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221118, PR China.
| | - Ruiqi Sha
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221118, PR China.
| | - Lin Tian
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221118, PR China.
| |
Collapse
|
13
|
Abstract
Hydrogen energy, as a clean and renewable energy, has attracted much attention in recent years. Water electrolysis via the hydrogen evolution reaction at the cathode coupled with the oxygen evolution reaction at the anode is a promising method to produce hydrogen. Given the shortage of freshwater resources on the planet, the direct use of seawater as an electrolyte for hydrogen production has become a hot research topic. Direct use of seawater as the electrolyte for water electrolysis can reduce the cost of hydrogen production due to the great abundance and wide availability. In recent years, various high-efficiency electrocatalysts have made great progress in seawater splitting and have shown great potential. This review introduces the mechanisms and challenges of seawater splitting and summarizes the recent progress of various electrocatalysts used for hydrogen and oxygen evolution reaction in seawater electrolysis in recent years. Finally, the challenges and future opportunities of seawater electrolysis for hydrogen and oxygen production are presented.
Collapse
|
14
|
Li Y, Ma W, Yang H, Tian Q, Xu Q, Han B. CO2-assisted synthesis of crystalline/amorphous NiFe-MOF heterostructure for high-efficiency electrocatalytic water oxidation. Chem Commun (Camb) 2022; 58:6833-6836. [DOI: 10.1039/d2cc01163h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modulating the crystalline phase and structure of metal organic frameworks (MOFs) for superior electrocatalytic oxygen evolution reaction (OER) performance is a significant but challenging topic. Herein, a facile CO2-assisted strategy...
Collapse
|
15
|
Bera K, Karmakar A, Karthick K, Sankar SS, Kumaravel S, Madhu R, Kundu S. Enhancement of the OER Kinetics of the Less-Explored α-MnO 2 via Nickel Doping Approaches in Alkaline Medium. Inorg Chem 2021; 60:19429-19439. [PMID: 34821497 DOI: 10.1021/acs.inorgchem.1c03236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Development of a low-cost transition metal-based catalyst for water splitting is of prime importance for generating green hydrogen on an industrial scale. Recently, various transition metal-based oxides, hydroxides, sulfides, and other chalcogenide-based materials have been synthesized for developing a suitable anode material for the oxygen evolution reaction (OER). Among the various transition metal-based catalysts, their oxides have received much consideration for OER, especially in lower pH condition, and MnO2 is one of the oxides that have widely been used for the same. The large variation in the structural disorder of MnO2 and internal resistance at the electrode-electrolyte interfaces have limited its large-scale application. By considering the above limitations of MnO2, here in this work, we have designed Ni-doped MnO2 via a simple wet-chemical synthetic route, which has been successfully applied for OER application in 0.1 M KOH solution. Doping of various quantities of Ni into the MnO2 lattices improved the OER properties, and for achieving 10 mA/cm2 current density, the Ni-doped MnO2 containing 0.02 M of Ni2+ ions (coined as MnO2-Ni0.002(M)) demands only 445 mV overpotential, whereas the bare MnO2 required 610 mV overpotential. It has been proposed that the incorporation of nickel ions into the MnO2 lattices leads to an electron transfer from the Ni3+ ions to Mn4+, which in turn facilitates the Jahn-Teller distortion in the Mn-O octahedral unit. This electron transfer and the creation of a structural disorder in the Mn sites result in the improvization of the OER properties of the MnO2 materials.
Collapse
Affiliation(s)
- Krishnendu Bera
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Kannimuthu Karthick
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Selvasundarasekar Sam Sankar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sangeetha Kumaravel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
16
|
Mondai J, Kumar Srivastava S. Electromagnetic Interference Shielding Effectiveness of Room Temperature Fabricated Manganese Dioxide/Carbon Dots Nanocomposites. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5542-5555. [PMID: 33980364 DOI: 10.1166/jnn.2021.19473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The present work is focused on the fabrication of manganese dioxide/carbon dots (MnO₂/CDs) nanocomposites at room temperature in situ co-participation method in an aqueous medium and characterized. Our study showed that the concentration of CDs controls the morphology of MnO₂/CDs nanocomposite and also acted as a reducing agent to convert potassium permanganate (KMnO₄) to MnO₂. Subsequently, nanoflowers, quasi-spherical particles, broken, and interconnected chain type of morphology was observed by adding dispersion of 0.5, 1.0, 1.5, and 2.0 ml CDs in acetone to 1 mmol KMnO₄ aqueous solution in the corresponding MnO₂/CDs-0.5, MnO₂/CDs-1.0, MnO₂/CDs-1.5, and MnO₂/CDs-2.0 composites, respectively. A plausible mechanism on the transformation of morphology of MnO₂/CDs with CDs concentration is also provided. Further, the present work also focused for the first time on the application in the electromagnetic interference (EMI) shielding of MnO₂/CD nanocomposites due to the high dielectric and conductivity. Interestingly, MnO₂/CDs-2.0 (nanochains) exhibited the highest total EMI shielding efficiency (SET) of ~39.4 dB following reflection as dominant shielding mechanism due to the high aspect ratio, highest conductivity, high dielectric loss, and impendence mismatch.
Collapse
Affiliation(s)
- Jayanta Mondai
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Suneel Kumar Srivastava
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
17
|
Lu Z, Du X, Sun M, Zhang Y, Li Y, Wang X, Wang Y, Du H, Yin H, Rao H. Novel dual-template molecular imprinted electrochemical sensor for simultaneous detection of CA and TPH based on peanut twin-like NiFe 2O 4/CoFe 2O 4/NCDs nanospheres: Fabrication, application and DFT theoretical study. Biosens Bioelectron 2021; 190:113408. [PMID: 34126330 DOI: 10.1016/j.bios.2021.113408] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/09/2021] [Accepted: 06/02/2021] [Indexed: 11/29/2022]
Abstract
Hollow peanut-shaped NiFe2O4/CoFe2O4 twinned nano-spherical shell composite materials have interconnected electron channels and excellent electrochemical performance, which prompted the use of this unique spatial structure to fabricate efficient electrochemical sensors. In this work, N-doped carbon dots (NCDs) incorporated into magnetic NiFe2O4/CoFe2O4 nanoparticle shell (NiFe2O4/CoFe2O4/NCDs) modified glassy carbon electrode (GCE) was applied to construct a dual-template molecularly imprinted polymer (MIP) based electrochemistry sensor (NiFe2O4/CoFe2O4/NCDs/MIP/GCE) for the simultaneous detection of catechin (CA) and theophylline (TPH). MIP was fabricated by an in-situ electrochemical polymerization strategy based on the theoretical exploration and density functional theory (DFT) computer directional simulation to screen out the optimal functional monomer (L-arginine) and the optimal ratio between the dual template molecules (CA and TPH) and functional monomer. The materials were characterized by SEM, TEM, XRD, XPS, and TGA. Besides, electron binding energy, binding constant, and imprinting factor were investigated. With the optimal conditions, the proposed electrochemical dual detection system showed outstanding analytical performance for the simultaneous sensing of CA and TPH, with an ultralow detection limit (LOD, S/N = 3) of 1.3 nM for CA in 0.01-1 μM (R2 = 0.9956) and 1-50 μM (R2 = 0.9928), as well as a LOD of 20.0 nM for TPH in the linear range of 0.1-100 μM (R2 = 0.9939), respectively. Also, the selectivity and anti-interference performances of the fabricated sensor were performed by differential pulse voltammetry and chronoamperometry, and successfully detected the analyte from tea drinks and human urine samples with the recovery rates ranging from 98.22% to 104.76% and relative standard deviations (RSD) were 1.19%-3.81%, demonstrated the sensor has excellent stability, repeatability, and reproducibility, which paves the way for other platforms to use this nanomaterial for the detection of antioxidant in the filed food safety.
Collapse
Affiliation(s)
- Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China.
| | - Xin Du
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Yan Zhang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Yifan Li
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China
| | - Haijun Du
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, 550025, PR China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, PR China.
| |
Collapse
|
18
|
Yuan M, Xu H, Wang C, Wang Y, Wang Y, Wang X, Du Y. PtM/M x B y (M=Ni, Co, Fe) Heterostructured Nanobundles as Advanced Electrocatalyst for Hydrogen Evolution Reaction. Chemistry 2021; 27:12851-12856. [PMID: 34115412 DOI: 10.1002/chem.202101874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 01/24/2023]
Abstract
Optimizing the electronic and synergistic effect of hybrid electrocatalysts based on Pt and Pt-based nanocatalysts is of tremendous importance towards a superior hydrogen evolution performance under both acidic and alkaline conditions. However, developing an ideal Pt-based hydrogen evolution reaction (HER) electrocatalyst with moderated electronic structure as well as strong synergistic effect is still a challenge. Herein, we fabricated boron (B)-doped PtNi nanobundles by a two-step method using NaBH4 as the boron source to obtain PtNi/Ni4 B3 heterostructures with well-defined nanointerfaces between PtNi and Ni4 B3 , achieving an enhanced catalytic HER performance. Especially, the PtNi/Ni4 B3 nanobundles (PtNi/Ni4 B3 NBs) can deliver a current density of 10 mA cm-2 at the overpotential of 14.6 and 26.5 mV under alkaline and acidic media, respectively, as well as outstanding electrochemical stability over 40 h at the current density of 10 mA cm-2 . Remarkably, this approach is also universal for the syntheses of PtCo/Co3 B and PtFe/Fe49 B with outstanding electrocatalytic HER performance.
Collapse
Affiliation(s)
- Mengyu Yuan
- College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hui Xu
- College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Cheng Wang
- College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yong Wang
- College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yuan Wang
- College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Xiaomei Wang
- School of Chemical Biology and Materials Engineering, Suzhou University Science and Technology, Suzhou, 215009, P. R. China
| | - Yukou Du
- College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
19
|
Fabricating dendritic N-C/MnOx to enable a highly efficient oxygen evolution reaction electrocatalysis. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Tian L, Li Z, Song M, Li J. Recent progress in water-splitting electrocatalysis mediated by 2D noble metal materials. NANOSCALE 2021; 13:12088-12101. [PMID: 34236371 DOI: 10.1039/d1nr02232f] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) nanostructures have enabled noble-metal-based nanomaterials to be promising electrocatalysts toward overall water splitting due to their inherent structural advantages, including a high specific surface active area, numerous low-coordinated atoms, and a high density of defects and edges. Moreover, it is also disclosed that the electronic effect and strain effect within 2D nanostructures also benefit the further promotion of the electrocatalytic performance. In this review, we have focused on the recent progress in the fabrication of advanced electrocatalysts based on 2D noble-metal-based nanomaterials toward water splitting electrocatalysis. First, fundamental descriptions about water-splitting mechanisms, some promising engineering strategies, and major challenges in electrochemical water splitting are given. Then, the structural merits of 2D nanostructures for water splitting electrocatalysis are also highlighted, including abundant surface active sites, lattice distortion, abundant surface defects, electronic effects, and strain effects. Additionally, some representative water-splitting electrocatalysts have been discussed in detail to highlight the superiorities of 2D noble-metal-based nanomaterials for electrochemical water splitting. Finally, the underlying challenges and future opportunities for the fabrication of more advanced electrocatalysts for water splitting are also highlighted. We hope that this review article provides guidance for the fabrication of more efficient electrocatalysts for boosting industrial hydrogen production via water splitting.
Collapse
Affiliation(s)
- Lin Tian
- C School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | | | | | | |
Collapse
|
21
|
Li Z, Lu X, Teng J, Zhou Y, Zhuang W. Nonmetal-doping of noble metal-based catalysts for electrocatalysis. NANOSCALE 2021; 13:11314-11324. [PMID: 34184008 DOI: 10.1039/d1nr02019f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In response to the shortage of fossil fuels, efficient electrochemical energy conversion devices are attracting increasing attention, while the limited electrochemical performance and high cost of noble metal-based electrode materials remain a daunting challenge. The electrocatalytic performance of electrode materials is closely bound with their intrinsic electronic/ionic states and crystal structures. Apart from the nanoscale design and conductive composite strategies, heteroatom doping, particularly for nonmetal doping (e.g., hydrogen, boron, sulfur, selenium, phosphorus, and tellurium), is also another effective strategy to greatly promote the intrinsic activity of the electrode materials by tuning their atomic structures. From the perspective of electrocatalytic reactions, the effective atomic structure regulation could induce additional active sites, create rich defects, and optimize the adsorption capability, thereby contributing to the promotion of the electrocatalytic performance of noble metal-based electrocatalysts. Encouraged by the great progress achieved in this field, we have reviewed recent advancements in nonmetal doping for electrocatalytic energy conversion. Specifically, the doping effect on the atomic structure and intrinsic electronic/ionic state is also systematically illustrated and the relationship with the electrocatalytic performance is also investigated. It is believed that this review will provide guidance for the development of more efficient electrocatalysts.
Collapse
Affiliation(s)
- Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Xinhua Lu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Jingrui Teng
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Yingmei Zhou
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Wenchang Zhuang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| |
Collapse
|
22
|
Jia J, Li L, Lian X, Wu M, Zheng F, Song L, Hu G, Niu H. A mild reduction of Co-doped MnO 2 to create abundant oxygen vacancies and active sites for enhanced oxygen evolution reaction. NANOSCALE 2021; 13:11120-11127. [PMID: 34132721 DOI: 10.1039/d1nr02324a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Efficient and non-precious-metal-based catalysts (e.g., manganese-based oxides) for the oxygen evolution reaction (OER) remain a substantial challenge. Creation of oxygen vacancies of manganese-based oxides with the aim to enhance their intrinsic activities is rarely reported, and there is a critical requirement for a mild and facile synthesis strategy to create abundant oxygen vacancies on manganese-based oxides. Herein, Co-doped MnO2 nanowires were reduced by NaBH4 solution at room temperature; then, MnCo2O4.5 nanosheets with abundant oxygen vacancies and active sites were formed on the surface of Co-doped MnO2 nanowires. Benefiting from the reduction strategy, the fabricated hierarchical Co-doped-MnO2@MnCo2O4.5 nanowire/nanosheet nanocomposites exhibit higher catalytic activity (an overpotential of 250 mV at a current density of 10 mA cm-2 in 1.0 M KOH solution) than pristine Co-doped MnO2 nanowires. The calculated TOF of Co-doped-MnO2@MnCo2O4.5 is 0.034 s-1 at the overpotential of 300 mV, which is 136-fold higher than that of Co-doped-MnO2. The excellent OER performance was attributed to the synergistic advantages of abundant oxygen vacancies and active sites over the hierarchical nanowire-nanosheet architectures.
Collapse
Affiliation(s)
- Jincan Jia
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Functional Inorganic Materials of Anhui Province, Department of Chemistry, Anhui University, Hefei 230601, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Gopi S, Selvamani V, Yun K. MoS 2 Decoration Followed by P Inclusion over Ni-Co Bimetallic Metal-Organic Framework-Derived Heterostructures for Water Splitting. Inorg Chem 2021; 60:10772-10780. [PMID: 34196173 DOI: 10.1021/acs.inorgchem.1c01478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Demonstrating a highly efficient non-noble bifunctional catalyst for complete water electrolysis remains challenging because of kinetic limitations and crucial importance for future energy harvesting. Herein, a low-cost, integrated composite of a Ni-Co metal-organic framework decorated with thin MoS2 nanosheets was synthesized by a simple hydrothermal method followed by carbonization and phosphorization for electrochemical oxygen and hydrogen evolution reactions. Such a composite heterostructure exhibits outstanding performance in the electrocatalysis process with a lower overpotential of 184 mV for the oxygen evolution reaction (OER) and 84 mV for the hydrogen evolution reaction (HER) in 1.0 M KOH and 0.5 M H2SO4 electrolytes to reach a current density of 10 mA cm-2, with a slight Tafel slope of 63 mV dec-1 for the OER and 96 mV dec-1 for the HER. The obtained results are far better than those of the commercial benchmark catalyst. Furthermore, online gas chromatography quantifies the amount of hydrogen generation in a symmetric cell as equal to 0.002121 moles with an energy efficiency of about 2.237 mg/kWh. Thus, the composite electrode's remarkable performance is further demonstrated as a potentially viable alternative non-noble electrocatalyst for energy conversion reactions.
Collapse
Affiliation(s)
- Sivalingam Gopi
- Department of BioNano Technology, Gachon University, GyeongGi -Do 13120, Republic of Korea
| | - Vadivel Selvamani
- Centre of Excellence for Energy Storage Technology (CEST), Vidyasirimedhi Institute of Science and technology, Rayong 21210, Thailand
| | - Kyusik Yun
- Department of BioNano Technology, Gachon University, GyeongGi -Do 13120, Republic of Korea
| |
Collapse
|
24
|
Li Z, Song M, Zhu W, Zhuang W, Du X, Tian L. MOF-derived hollow heterostructures for advanced electrocatalysis. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213946] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Yu R, Liu D, Yuan M, Wang Y, Ye C, Li J, Du Y. Universal MOF-Mediated synthesis of 2D CoNi-based layered triple hydroxides electrocatalyst for efficient oxygen evolution reaction. J Colloid Interface Sci 2021; 602:612-618. [PMID: 34147751 DOI: 10.1016/j.jcis.2021.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
Developing low-budget, stable, and high-performance electrocatalyst toward oxygen evolution reaction (OER) is of pivotal significance in the fields of energy conversion and storage. Herein, a universal metal organic framework (MOF)-mediated method for the synthesis of two-dimensional (2D) layered triple hydroxides (LTHs) nanosheets with ultrathin nature has been developed. It is interesting to disclose that the CoNi-based LTHs possess better electrochemical catalytic performance, giving superior performance to commercial RuO2 catalysts. Remarkably, benefitting from the ultrathin nanosheet configuration, optimized electronic structure, and strong synergistic effect, the optimized CoNiFe LTHs nanosheets show excellent OER performance with an ultralow overpotential of 262 mV at a current density of 10 mA cm-2 and a small Tafel slope of 88.1 mV dec-1. This work provides a promising avenue to develop low-cost and high-performance layered ternary hydroxide electrocatalysts.
Collapse
Affiliation(s)
- Rui Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Dongmei Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Mengyu Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Yuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Changqing Ye
- Jiangsu Key Laboratory for Environmental Functional Materials, Institute of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China.
| |
Collapse
|
26
|
Wang C, Shang H, Jin L, Xu H, Du Y. Advances in hydrogen production from electrocatalytic seawater splitting. NANOSCALE 2021; 13:7897-7912. [PMID: 33881101 DOI: 10.1039/d1nr00784j] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As one of the most abundant resources on the Earth, seawater is not only a promising electrolyte for industrial hydrogen production through electrolysis, but also of great significance for the refining of edible salt. Despite the great potential for large-scale hydrogen production, the implementation of water electrolysis requires efficient and stable electrocatalysts that can maintain high activity for water splitting without chloride corrosion. Recent years have witnessed great achievements in the development of highly efficient electrocatalysts toward seawater splitting. Starting from the historical background to the most recent achievements, this review will provide insights into the current state, challenges, and future perspectives of hydrogen production through seawater electrolysis. In particular, the mechanisms of overall water splitting, key features of seawater electrolysis, noble-metal-free electrocatalysts for seawater electrolysis and the underlying mechanisms are also highlighted to provide guidance for fabricating more efficient electrocatalysts toward seawater splitting.
Collapse
Affiliation(s)
- Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Hongyuan Shang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Liujun Jin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
27
|
Wang C, Shang H, Wang Y, Li J, Guo S, Guo J, Du Y. A general MOF-intermediated synthesis of hollow CoFe-based trimetallic phosphides composed of ultrathin nanosheets for boosting water oxidation electrocatalysis. NANOSCALE 2021; 13:7279-7284. [PMID: 33889888 DOI: 10.1039/d1nr00075f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Engineering an electrode material for boosting reaction kinetics is highly desired for the oxygen evolution reaction (OER) in the anodic half reaction, and is still a grand challenge for energy conversion technologies. By taking inspiration from the catalytic properties of transition metal phosphides (TMPs) and metal-organic frameworks (MOFs), we herein propose a general MOF-intermediated synthesis of a series of hollow CoFeM (M = Bi, Ni, Mn, Cu, Ce, and Zn) trimetallic phosphides composed of ultrathin nanosheets as advanced electrocatalysts for the OER. A dramatic improvement of electrocatalytic performance toward the OER is observed for hollow CoFeM trimetallic phosphides compared to bimetallic CoFe phosphides. Remarkably, composition-optimized CoFeBiP hollow microspheres could deliver superior electrocatalytic performance, achieving a current density of 10 mA cm-2 with an overpotential of only 273 mV. Mechanistic investigations reveal that the Bi and P doping effectively optimizes the electronic structure of Co and Fe by charge redistribution, which significantly lowers the adsorption energy of oxygen intermediates. Moreover, the hollow microsphere structures composed of ultrathin nanosheets also enable them to provide rich surface active sites to boost the electrocatalytic OER.
Collapse
Affiliation(s)
- Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhang L, Liu X, Luo L, Hu C, Fu J, Chang X, Gan T. A high-performance voltammetric methodology for the ultra-sensitive detection of riboflavin in food matrices based on graphene oxide-covered hollow MnO 2 spheres. Food Chem 2021; 352:129368. [PMID: 33667921 DOI: 10.1016/j.foodchem.2021.129368] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/21/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022]
Abstract
A high-performance voltammetric methodology was developed to achieve ultra-sensitive detection of riboflavin, employing an electrode modified by graphene oxide-covered hollow MnO2 spheres nanocomposite with high catalytic activity, large surface area, and hierarchical layered structure. Under the optimal conditions, the current responses of the oxidation peak located at -0.39 V showed a good linear relationship versus the concentration of riboflavin in the range of 1.0 nM-4.0 μM in acetate buffer (pH 5.4). The limit of detection was determined as 0.26 nM. Moreover, the proposed electrode exhibited high reproducibility (relative standard deviation of 1.7%, n = 10) and excellent stability (97.6% sensitivity within two months), which has been successfully applied to the quantification of riboflavin in complicated food matrices, with results in good accordance with those obtained by chromatography as a reference method, indicating it is an effective sensing platform for ultra-sensitive determination of riboflavin in practical applications.
Collapse
Affiliation(s)
- Lijun Zhang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains & Henan Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China; Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards Testing Technology for Agro-Products, Fujian Academy of Agricultural Science, Fuzhou 350013, China
| | - Xian Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains & Henan Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China
| | - Luyu Luo
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains & Henan Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China
| | - Cong Hu
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jianwei Fu
- Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards Testing Technology for Agro-Products, Fujian Academy of Agricultural Science, Fuzhou 350013, China
| | - Xueping Chang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains & Henan Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China.
| | - Tian Gan
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains & Henan Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang 464000, China; Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China; Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China; Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards Testing Technology for Agro-Products, Fujian Academy of Agricultural Science, Fuzhou 350013, China.
| |
Collapse
|
29
|
In situ selenylation of molybdate ion intercalated Co-Al layered double hydrotalcite for high-performance electrocatalytic oxygen evolution reaction. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Díaz-Coello S, Palenzuela J, Afonso M, Pastor E, García G. WC modified with ionic liquids for the hydrogen evolution reaction in alkaline solution. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
CoS2 strongly coupled with porous FeNC as efficient and stable electrocatalyst for rechargeable zinc-air batteries. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2020.12.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Li W, Jiang Y, Yang M, Qu M, Li Y, Shen W, He R, Li M. Controlled synthesis of hierarchical hollow CoLDH nanocages electrocatalysts for oxygen evolution reaction. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2020.111011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Mukhopadhyay S, Basu O, Das SK. ZIF‐8 MOF Encapsulated Co‐porphyrin, an Efficient Electrocatalyst for Water Oxidation in a Wide pH Range: Works Better at Neutral pH. ChemCatChem 2020. [DOI: 10.1002/cctc.202000804] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Subhabrata Mukhopadhyay
- School of Chemistry University of Hyderabad P.O. – Central University Hyderabad 500046 India
| | - Olivia Basu
- School of Chemistry University of Hyderabad P.O. – Central University Hyderabad 500046 India
| | - Samar K. Das
- School of Chemistry University of Hyderabad P.O. – Central University Hyderabad 500046 India
| |
Collapse
|