1
|
Huang H, Zhou Z, Qian C, Liu S, Chi Z, Xu J, Yue M, Zhang Y. Grafting Polyethyleneimine-Poly(ethylene glycol) Gel onto a Heat-Resistant Polyimide Nanofiber Separator for Improving Lithium-Ion Transporting Ability in Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37335981 DOI: 10.1021/acsami.3c01788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
To improve the lithium-ion transporting ability in lithium-ion batteries, a high-performance polyimide-based lithium-ion battery separator (PI-mod) was prepared by chemically grafting poly(ethylene glycol) (PEG) onto the surface of a heat-resistant polyimide nanofiber matrix with the assistance of amino-rich polyethyleneimine (PEI). The resulted PEI-PEG polymer coating exhibited unique gel-like properties with an electrolyte uptake rate of 168%, an area resistance as low as 2.60 Ω·cm2, and an ionic conductivity up to 2.33 mS·cm-1, which are 3.5, 0.10, and 12.3 times that of the commercial separator Celgard 2320, respectively. Meanwhile, the heat-resistant polyimide skeleton can effectively avoid thermal shrinkage of the modified separator even after 200 °C treatment for 0.5 h, which ensures the safety of the battery working under extreme conditions. The modified PI separator possessed a high electrochemical stability window of 4.5 V. Compared with the batteries from the commercial separator Celgard 2320 and the pure polyimide matrix, the assembled coin cell with the PI-mod separator showed much better rate capabilities and capacity retention due to the high electrolyte affinity of the PEI-PEG polymer coating. The developed strategy of using the electrolyte-swollen polymer to modify the thermal-resistant separator network provides an efficient way for establishing high-power lithium-ion batteries with good safety performance.
Collapse
Affiliation(s)
- Haitao Huang
- PCFM Laboratory, GD HPPC Laboratory, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhuxin Zhou
- PCFM Laboratory, GD HPPC Laboratory, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Shenzhen Yanyi New Materials Co Ltd., Shenzhen 518110, P. R. China
| | - Chao Qian
- Shenzhen Yanyi New Materials Co Ltd., Shenzhen 518110, P. R. China
| | - Siwei Liu
- PCFM Laboratory, GD HPPC Laboratory, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenguo Chi
- PCFM Laboratory, GD HPPC Laboratory, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiarui Xu
- PCFM Laboratory, GD HPPC Laboratory, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Min Yue
- Shenzhen Yanyi New Materials Co Ltd., Shenzhen 518110, P. R. China
| | - Yi Zhang
- PCFM Laboratory, GD HPPC Laboratory, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
2
|
Zhang M, Wang L, Xu H, Song Y, He X. Polyimides as Promising Materials for Lithium-Ion Batteries: A Review. NANO-MICRO LETTERS 2023; 15:135. [PMID: 37221393 PMCID: PMC10205965 DOI: 10.1007/s40820-023-01104-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023]
Abstract
Lithium-ion batteries (LIBs) have helped revolutionize the modern world and are now advancing the alternative energy field. Several technical challenges are associated with LIBs, such as increasing their energy density, improving their safety, and prolonging their lifespan. Pressed by these issues, researchers are striving to find effective solutions and new materials for next-generation LIBs. Polymers play a more and more important role in satisfying the ever-increasing requirements for LIBs. Polyimides (PIs), a special functional polymer, possess unparalleled advantages, such as excellent mechanical strength, extremely high thermal stability, and excellent chemical inertness; they are a promising material for LIBs. Herein, we discuss the current applications of PIs in LIBs, including coatings, separators, binders, solid-state polymer electrolytes, and active storage materials, to improve high-voltage performance, safety, cyclability, flexibility, and sustainability. Existing technical challenges are described, and strategies for solving current issues are proposed. Finally, potential directions for implementing PIs in LIBs are outlined.
Collapse
Affiliation(s)
- Mengyun Zhang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Li Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Hong Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Youzhi Song
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xiangming He
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
3
|
Lu YH, Huang YC, Wang YZ, Ho KS. Studies on the Application of Polyimidobenzimidazole Based Nanofiber Material as the Separation Membrane of Lithium-Ion Battery. Polymers (Basel) 2023; 15:polym15081954. [PMID: 37112101 PMCID: PMC10140945 DOI: 10.3390/polym15081954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Aromatic polyimide has good mechanical properties and high-temperature resistance. Based on this, benzimidazole is introduced into the main chain, and its intermolecular (internal) hydrogen bond can increase mechanical and thermal properties and electrolyte wettability. Aromatic dianhydride 4,4'-oxydiphthalic anhydride (ODPA) and benzimidazole-containing diamine 6,6'-bis [2-(4-aminophenyl)benzimidazole] (BAPBI) were synthesized by means of a two-step method. Imidazole polyimide (BI-PI) was used to make a nanofiber membrane separator (NFMS) by electrospinning process, using its high porosity and continuous pore characteristics to reduce the ion diffusion resistance of the NFMS, enhancing the rapid charge and discharge performance. BI-PI has good thermal properties, with a Td5% of 527 °C and a dynamic mechanical analysis Tg of 395 °C. The tensile strength of the NFMS increased from 10.92MPa to 51.15MPa after being hot-pressed. BI-PI has good miscibility with LIB electrolyte, the porosity of the film is 73%, and the electrolyte absorption rate reaches 1454%. That explains the higher ion conductivity (2.02 mS cm-1) of NFMS than commercial one (0.105 mS cm-1). When applied to LIB, it is found that it has high cyclic stability and excellent rate performance at high current density (2 C). BI-PI (120 Ω) has a lower charge transfer resistance than the commercial separator Celgard H1612 (143 Ω).
Collapse
Affiliation(s)
- Yu-Hsiang Lu
- Department of Chemical and Materials Engineering, National Yu-Lin University of Science & Technology, 123, Sec. 3, University Rd., Douliu 64301, Taiwan
| | - Yu-Chang Huang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, 415, Chien-Kuo Road, Kaohsiung 80782, Taiwan
| | - Yen-Zen Wang
- Department of Chemical and Materials Engineering, National Yu-Lin University of Science & Technology, 123, Sec. 3, University Rd., Douliu 64301, Taiwan
| | - Ko-Shan Ho
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, 415, Chien-Kuo Road, Kaohsiung 80782, Taiwan
| |
Collapse
|
4
|
Mussel stimulated modification of flexible Janus PAN/PVDF-HFP nanofiber hybrid membrane for advanced lithium-ion batteries separator. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
5
|
Lu YH, Wang YZ, Tsai MY, Lin HP, Hsu CH. Electrospun Benzimidazole-Based Polyimide Membrane for Supercapacitor Applications. MEMBRANES 2022; 12:membranes12100961. [PMID: 36295721 PMCID: PMC9607089 DOI: 10.3390/membranes12100961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 05/14/2023]
Abstract
A benzimidazole-containing diamine monomer was prepared via a simple one-step synthesis process. A two-step procedure involving polycondensation in the presence of aromatic dianhydrides (4,4'-oxydiphthalic anhydride, ODPA) followed by thermal imidization was then performed to prepare a benzimidazole-based polyimide (BI-PI). BI-PI membranes were fabricated using an electrospinning technique and were hot pressed for 30 min at 200 °C under a pressure of 50 kgf /cm2. Finally, the hot-pressed membranes were assembled into supercapacitors, utilizing high-porosity-activated water chestnut shell biochar as the active material. The TGA results showed that the BI-PI polymer produced in the two-step synthesis process had a high thermal stability (Td5% = 527 °C). Moreover, the hot-press process reduced the pore size in the BI-PI membrane and improved the pore-size uniformity. The hot-press procedure additionally improved the mechanical properties of the BI-PI membrane, resulting in a high tensile modulus of 783 MPa and a tensile strength of 34.8 MPa. The cyclic voltammetry test results showed that the membrane had a specific capacitance of 121 F/g and a capacitance retention of 77%. By contrast, a commercial cellulose separator showed a specific capacitance value of 107 F/g and a capacitance retention of 49% under the same scanning conditions. Finally, the membrane showed both a small equivalent series resistance (Rs) and a small interfacial resistance (Rct). Overall, the results showed that the BI-PI membrane has significant potential as a separator for high-performance supercapacitor applications.
Collapse
Affiliation(s)
- Yu-Hsiang Lu
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, No. 123, Sec. 3, University Road, Douliou 64002, Taiwan
| | - Yen-Zen Wang
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, No. 123, Sec. 3, University Road, Douliou 64002, Taiwan
- Correspondence: (Y.-Z.W.); (C.-H.H.)
| | - Ming-Ying Tsai
- Department of Chemistry, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan
| | - Hong-Ping Lin
- Department of Chemistry, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan
| | - Chun-Han Hsu
- General Education Center, National Tainan Junior College of Nursing, No. 78, Sec. 2, Minzu Road, Tainan City 700, Taiwan
- Correspondence: (Y.-Z.W.); (C.-H.H.)
| |
Collapse
|
6
|
Liu Y, Wang Y, Wu D. Synthetic strategies for highly transparent and colorless polyimide film. J Appl Polym Sci 2022. [DOI: 10.1002/app.52604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yuan‐Yuan Liu
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing China
- School of Future Technology University of Chinese Academy of Sciences Beijing China
| | - Ya‐Kun Wang
- School of Foreign Studies China University of Political Science and Law Beijing China
| | - Da‐Yong Wu
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing China
| |
Collapse
|
7
|
Yang LY, Cao JH, Liang WH, Wang YK, Wu DY. Effects of the Separator MOF-Al 2O 3 Coating on Battery Rate Performance and Solid-Electrolyte Interphase Formation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13722-13732. [PMID: 35274932 DOI: 10.1021/acsami.2c00390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal organic frameworks (MOFs) have unique advantages in optimizing the ionic conductivity of battery separators because of their rich cavity structure and highly ordered and connected pores. In this study, we used a hydrothermal method to synthesize a functional material, Ag-MOF crystal, as a separator coating content, and then studied the properties and application effect of the MOF-Al2O3-blended coating applying to a polyethylene (PE) separator (MOFxAl1-x/PE). Results show that MOF0.08Al0.92/PE (MOF/Al2O3 = 0.08:0.92) used in NCM811||Li cells significantly not only improves the fast charge-discharge performance of the cells but also inhibits the growth of lithium dendrites during long-term charge-discharge cycling; the Li+ transference number (tLi+) of the MOF0.08Al0.92/PE composite separator is 0.61; the Li||separator||Li half-cell circulates stably for 1000 h at varying current density from 0.5 to 10 mA cm-2 and only produces low overpotentials, indicating that MOF0.08Al0.92 stabilizes lithium. The initial capacity of the NCM811||Li cell using the MOF0.08Al0.92/PE separator is 165.0 mA h g-1, its capacity retention is 70.67% after 300 cycles at 5 C, and the interface resistance of the cells only increases from 13.8 to 31.5 Ω, whereas the capacity retention of Al2O3/PE separator batteries is only 40.41% (62.2 mA h g-1) under the same conditions. During the charge-discharge cycling, the MOF-Al2O3 coating induces the lithium anode to quickly form a stable and dense solid-electrolyte interphase layer, promotes the uniform deposition of Li+, and inhibits the growth of lithium dendrites as well.
Collapse
Affiliation(s)
- Lu-Ye Yang
- Technical Institute of Physics and Chemistry, Chinese Academy of Science, 29 Zhong-guan-cun East Road, Haidian District, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, P. R. China
| | - Jian-Hua Cao
- Technical Institute of Physics and Chemistry, Chinese Academy of Science, 29 Zhong-guan-cun East Road, Haidian District, Beijing 100190, P. R. China
| | - Wei-Hua Liang
- Technical Institute of Physics and Chemistry, Chinese Academy of Science, 29 Zhong-guan-cun East Road, Haidian District, Beijing 100190, P. R. China
| | - Ya-Kun Wang
- China University of Political Science and Law, No. 27 Fu-xue Road, Changping District, Beijing 102249, China
| | - Da-Yong Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Science, 29 Zhong-guan-cun East Road, Haidian District, Beijing 100190, P. R. China
| |
Collapse
|
8
|
Chang B, Ma J, Jiang T, Gao L, Li Y, Zhou M, Huang Y, Han S. Reduced graphene oxide promoted assembly of graphene@polyimide film as a flexible cathode for high-performance lithium-ion battery. RSC Adv 2020; 10:8729-8734. [PMID: 35496540 PMCID: PMC9050026 DOI: 10.1039/d0ra00884b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/16/2020] [Indexed: 11/21/2022] Open
Abstract
Organic carbonyl polymers have been gradually used as the cathode in lithium-ion batteries (LIB). However, there are some limits in most organic polymers, such as low reversible capacity, poor rate performance, cycle instability, etc., due to low electrochemical conductivity. To mitigate the limits, we propose a strategy based on polyimide (PI)/graphene electroactive materials coated with reduced graphene oxide to prepare a flexible film (G@PI/RGO) by solvothermal and vacuum filtration processes. As a flexible cathode for LIB, it provides a reversible capacity of 198 mA h g−1 at 30 mA g−1 and excellent rate performance of 100 mA h g−1 at high current densities of 6000 mA g−1, and even a super long cycle performance (2500 cycles, 70% capacity retention). The excellent performance results in a special layer structure in which the electroactive PI was anchored and coated by the graphene. The present synthetic method can be further applied to construct other high-performance organic electrodes in energy storage. G@PI/RGO is prepared by a combination of solvothermal reaction and carbonization. With good mechanical flexibility and high conductivity, it shows excellent performance when directly used as the cathode for LIB.![]()
Collapse
Affiliation(s)
- Bin Chang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Haiquan Road 100 Shanghai 201418 PR China
| | - Jian Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Haiquan Road 100 Shanghai 201418 PR China
| | - Tiancai Jiang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, Wuhan University Wuhan 430072 Hubei PR China
| | - Li Gao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Haiquan Road 100 Shanghai 201418 PR China
| | - Yuanting Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Haiquan Road 100 Shanghai 201418 PR China
| | - Mingan Zhou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Haiquan Road 100 Shanghai 201418 PR China
| | - Yanshan Huang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Haiquan Road 100 Shanghai 201418 PR China
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Haiquan Road 100 Shanghai 201418 PR China
| |
Collapse
|