1
|
Luo J, Xiao P, Li Y, Xiong J, Zhou P, Pang L, Xie X, Li Y. Modified preparation of Si@C@TiO 2 porous microspheres as anodes for high-performance lithium-ion batteries. Dalton Trans 2023; 52:2463-2471. [PMID: 36727476 DOI: 10.1039/d2dt03775k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Microscale porous silicon materials have shown great application potential as anodes for next-generation lithium-ion batteries (LIBs); however, they face significant challenges, including mechanical structure instability, low intrinsic conductivity, and uncontrollable processing. In this study, a modified etching strategy combined with a facile sol-gel method is demonstrated to prepare microscale porous Si microspheres encapsulated by an inner amorphous carbon shell (≈10 nm) and an outer rigid anatase titanium oxide (TiO2) shell (≈20 nm) (PSi@C@TiO2), with the intact porous framework and core-shell-shell spherical structure. The interconnected pores can sufficiently accommodate the expansion of the Si core during lithiation. Moreover, the double shells can not only enhance the kinetic behavior of the PSi@C@TiO2 microspheres, but can act as a compact fence to force the Si core to expand toward the internal pores during lithiation, ensuring the integrity of the porous spherical structure. As a result, the PSi@C@TiO2 anodes show greatly superior high specific capacity, excellent rate capability, stable solid-electrolyte interphase (SEI) films and steady mechanical structure. It delivers a high reversible capacity of 1004 mA h g-1 after 250 cycles at 0.5 A g-1. This study provides a modified method to prepare microscale porous Si anodes with a stable mechanical structure and long cycle life for LIBs.
Collapse
Affiliation(s)
- Jian Luo
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, P. R. China.
| | - Peng Xiao
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, P. R. China. .,National Key Laboratory of Science and Technology for National Defence on High-strength Structural Materials, Central South University, Changsha 410083, P. R. China
| | - Yangjie Li
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, P. R. China.
| | - Jiangzhi Xiong
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, P. R. China.
| | - Peng Zhou
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, P. R. China.
| | - Liang Pang
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, P. R. China.
| | - Xilei Xie
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, P. R. China.
| | - Yang Li
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, P. R. China. .,National Key Laboratory of Science and Technology for National Defence on High-strength Structural Materials, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
2
|
Du A, Li H, Chen X, Han Y, Zhu Z, Chu C. Recent Research Progress of Silicon‐Based Anode Materials for Lithium‐Ion Batteries. ChemistrySelect 2022. [DOI: 10.1002/slct.202201269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aimin Du
- School of Automotive Studies Tongji University Shanghai 201804 P.R.China
| | - Hang Li
- School of Automotive Studies Tongji University Shanghai 201804 P.R.China
| | - Xinwen Chen
- School of Automotive Studies Tongji University Shanghai 201804 P.R.China
| | - Yeyang Han
- School of Automotive Studies Tongji University Shanghai 201804 P.R.China
| | - Zhongpan Zhu
- School of Automotive Studies Tongji University Shanghai 201804 P.R.China
- School of Electronic and Information Engineering Tongji University Shanghai 201804 P.R.China
| | - Chuanchuan Chu
- School of Automotive Studies Tongji University Shanghai 201804 P.R.China
| |
Collapse
|
3
|
Huang W, Zhao S, Wang J, Xian X. Contribution of TiN to the enhanced cycling stability of Si@TiN/C composites as anode materials for Li-ion batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Hou L, Xiong S, Cui R, Jiang Y, Chen R, Liang W, Gao Z, Gao F. Three‐Dimensional Porous Carbon Framework Confined Si@TiO
2
Nanoparticles as Anode Material for High‐Capacity Lithium‐Ion Batteries. ChemElectroChem 2022. [DOI: 10.1002/celc.202101447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Li Hou
- Key Laboratory of Applied Chemistry Yanshan University Qinhuangdao 066004 China
| | - Shuangsheng Xiong
- Key Laboratory of Applied Chemistry Yanshan University Qinhuangdao 066004 China
| | - Ruiwen Cui
- Key Laboratory of Applied Chemistry Yanshan University Qinhuangdao 066004 China
| | - Yang Jiang
- Key Laboratory of Applied Chemistry Yanshan University Qinhuangdao 066004 China
| | - Rongna Chen
- Key Laboratory of Applied Chemistry Yanshan University Qinhuangdao 066004 China
| | - Wenjing Liang
- Key Laboratory of Applied Chemistry Yanshan University Qinhuangdao 066004 China
| | - Zeyuan Gao
- Key Laboratory of Applied Chemistry Yanshan University Qinhuangdao 066004 China
| | - Faming Gao
- Key Laboratory of Applied Chemistry Yanshan University Qinhuangdao 066004 China
| |
Collapse
|
5
|
Zhou W, Chen J, Xu X, Han X, Chen M, Yang L, Hirano SI. Interface Engineering of Silicon and Carbon by Forming a Graded Protective Sheath for High-Capacity and Long-Durable Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15216-15225. [PMID: 33760583 DOI: 10.1021/acsami.1c00107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Silicon is one of the most promising anode materials for lithium-ion batteries, whereas its low electronic conductivity and huge volumetric expansion upon lithiation strongly influence its prospective applications. Herein, we develop a facile method to introduce a graded protective sheath onto the surface of Si nanoparticles by utilizing lignin as the carbon source and Ni(NO3)2 as the auxiliary agent. Interestingly, the protective sheath is composed of NiSi2, SiC, and C from the interior to the exterior, thereby guaranteeing excellent compatibility between the neighboring components. Thanks to this unique coating layer, the obtained nanocomposite delivers a large reversible specific capacity (1586.3 mAh g-1 at 0.2 A g-1), excellent rate capability (879.4 mAh g-1 at 5 A g-1), and superior cyclability (88.2% capacity retention after 500 cycles at 1 A g-1). Such great performances are found to derive from a slight volumetric expansion, high Li+ ion diffusion coefficients, good interface stability, and fast electrochemical kinetics. These properties are obviously superior to those of their counterparts, benefiting from the interface engineering. This study offers new insights into constructing high-capacity and long-durable electrode materials for energy storage.
Collapse
Affiliation(s)
- Weijun Zhou
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jizhang Chen
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xinwu Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xiang Han
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Minfeng Chen
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Li Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Hirano Institute for Materials Innovation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shin-Ichi Hirano
- Hirano Institute for Materials Innovation, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Dual confinement of carbon/TiO2 hollow shells enables improved lithium storage of Si nanoparticles. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|