1
|
Li X, Qian J, Wu Z, Liu C, Guan X, Zhou Y, Chen Z, Chen F. Conductive polymer polyaniline covering promotes the electrochemical properties of a nickel-rich quaternary cathode LiNi 0.88Co 0.06Mn 0.03Al 0.03O 2. NEW J CHEM 2023. [DOI: 10.1039/d2nj06292e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Conductive polymer PANI coated Ni-rich quaternary cathode LiNi0.88Co0.06Mn0.03Al0.03O2 demonstrates superior cycling performance owing to the stable surface protective layer.
Collapse
|
2
|
Chu YQ, Hu Y, Lai AJ, Pan QC, Zheng FH, Huang YG, Wang HQ, Li QY. Enhancement structural stability of LiNi0.8Co0.1Mn0.1O2 via S2− doping combine with Li2SO4 coating co-modification. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Improved Cycling Performance and High Rate Capacity of LiNi0.8Co0.1Mn0.1O2 Cathode Achieved by Al(PO3)3 Modification via Dry Coating Ball Milling. COATINGS 2022. [DOI: 10.3390/coatings12030319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
LiNi0.8Co0.1Mn0.1O2 (NCM811) has attracted extensive attention as a promising cathode of lithium-ion batteries (LIBs) in next-generation electric vehicles, as the NCM811 sample possesses a high energy density and a price advantage. In this work, NCM811 was modified with an Al(PO3)3 precursor using the dry ball milling method followed by heat treatment to enable commercial development both at room temperature and a higher temperature. Compared with the unmodified NCM811 sample with the capacity retention of 68.70%, after Al(PO3)3 modification, the NCM811 sample heated to 500 °C exhibited a super capacity retention ratio of 93.88% after 200 charging–discharging cycles with the initial discharge capacity of 178.1 mAh g−1 at 1 C. Additionally, after Al(PO3)3 modification, the NCM811 sample heated to 500 °C showed much improved rate performance compared to bare NCM811 at the current density of 5 C. The enhanced electrochemical performance after cycling was due to the decreased charge transfer resistance and increased Li+ transmission, which were confirmed via electrochemical impedance spectra (EIS). The NCM electrodes showed improved structural stability as layered structures after Al(PO3)3 modification, consistent with the improved cycling performance. This work revealed that LiNi0.8Co0.1Mn0.1O2 material with phosphide coating can be constructed using a simple ball milling method, which is feasible for obtaining high-performance electrode materials.
Collapse
|
4
|
Boosting the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode materials with Zn3(PO4)2 surface coating. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Abstract
The aim of this article is to examine the progress achieved in the recent years on two advanced cathode materials for EV Li-ion batteries, namely Ni-rich layered oxides LiNi0.8Co0.15Al0.05O2 (NCA) and LiNi0.8Co0.1Mn0.1O2 (NCM811). Both materials have the common layered (two-dimensional) crystal network isostructural with LiCoO2. The performance of these electrode materials are examined, the mitigation of their drawbacks (i.e., antisite defects, microcracks, surface side reactions) are discussed, together with the prospect on a next generation of Li-ion batteries with Co-free Ni-rich Li-ion batteries.
Collapse
|