1
|
Benzait Z, Trabzon L. Graphite Size Effect on Chemical Expansion and Graphene Oxide Properties. ACS OMEGA 2022; 7:37885-37895. [PMID: 36312385 PMCID: PMC9609075 DOI: 10.1021/acsomega.2c05059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Does larger graphite flake size always lead to larger and better graphene oxide (GO)? Is there an optimum size to balance between the large building blocks needed and the defects generated during oxidation? In this study, the effect of using four different graphite flake sources on the size, structure, and properties of GO and reduced graphene oxide (rGO) was investigated. GO was mainly prepared by the enhanced synthesis method except for the smallest graphite size, which could not be expanded before oxidation. The effect of the flakes' lateral size and thickness on the expansion volume was also studied. Several characterization techniques were performed throughout this work, and their results provide evidence of how the graphite size changes not only the expansion volume of the chemically expanded graphite (CEG) as well as the final properties of GO or rGO but also the presence of organosulfate impurities, defects, wide size distribution, and the harsh oxidation reaction itself.
Collapse
Affiliation(s)
- Zineb Benzait
- Nanoscience
and Nanoengineering Department, Istanbul
Technical University, Maslak, Istanbul 34469, Turkey
| | - Levent Trabzon
- Nanoscience
and Nanoengineering Department, Istanbul
Technical University, Maslak, Istanbul 34469, Turkey
- Department
of Mechanical Engineering, Istanbul Technical
University, Istanbul 34437, Turkey
- MEMS
Research Center, Istanbul Technical University, Istanbul 34437, Turkey
| |
Collapse
|
2
|
Critical roles of reduced graphene oxide in the electrochemical performance of silicon/reduced graphene oxide hybrids for high rate capable lithium-ion battery anodes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Chen TW, Anushya G, Chen SM, Kalimuthu P, Mariyappan V, Gajendran P, Ramachandran R. Recent Advances in Nanoscale Based Electrocatalysts for Metal-Air Battery, Fuel Cell and Water-Splitting Applications: An Overview. MATERIALS 2022; 15:ma15020458. [PMID: 35057176 PMCID: PMC8778511 DOI: 10.3390/ma15020458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 01/09/2023]
Abstract
Metal-air batteries and fuel cells are considered the most promising highly efficient energy storage systems because they possess long life cycles, high carbon monoxide (CO) tolerance, and low fuel crossover ability. The use of energy storage technology in the transport segment holds great promise for producing green and clean energy with lesser greenhouse gas (GHG) emissions. In recent years, nanoscale based electrocatalysts have shown remarkable electrocatalytic performance towards the construction of sustainable energy-related devices/applications, including fuel cells, metal-air battery and water-splitting processes. This review summarises the recent advancement in the development of nanoscale-based electrocatalysts and their energy-related electrocatalytic applications. Further, we focus on different synthetic approaches employed to fabricate the nanomaterial catalysts and also their size, shape and morphological related electrocatalytic performances. Following this, we discuss the catalytic reaction mechanism of the electrochemical energy generation process, which provides close insight to develop a more efficient catalyst. Moreover, we outline the future perspectives and challenges pertaining to the development of highly efficient nanoscale-based electrocatalysts for green energy storage technology.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Materials, Imperial College London, London SW7 2AZ, UK;
| | - Ganesan Anushya
- Department of Physics, S.A.V. Sahaya Thai Arts and Science (Women) College, Sahayam Nagar, Kumarapuram Road, Vadakkankulam, Tirunelveli 627116, India;
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Laboratory, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan;
- Correspondence: (S.-M.C.); (R.R.)
| | - Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia;
| | - Vinitha Mariyappan
- Electroanalysis and Bioelectrochemistry Laboratory, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan;
| | - Pandi Gajendran
- Department of Chemistry, The Madura College, Vidya Nagar, Madurai 625011, India;
| | - Rasu Ramachandran
- Department of Chemistry, The Madura College, Vidya Nagar, Madurai 625011, India;
- Correspondence: (S.-M.C.); (R.R.)
| |
Collapse
|
4
|
Li N, Liu Y, Ji X, Feng J, Wang K, Xie J, Lei G, Liu X, Guo X, Zhang J. Polydopamine-mediated synthesis of Si@carbon@graphene aerogels for enhanced lithium storage with long cycle life. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Fang C, Liu J, Zhang X, Luo W, Zhang G, Li X, Liu Z, Yin P, Feng W. In Situ Formed Weave Cage-Like Nanostructure Wrapped Mesoporous Micron Silicon Anode for Enhanced Stable Lithium-Ion Battery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29726-29736. [PMID: 34137583 DOI: 10.1021/acsami.1c07898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The low-cost and high-capacity micron silicon is identified as the suitable anode material for high-performance lithium-ion batteries (LIBs). However, the particle fracture and severe capacity fading during electrochemical cycling greatly impede the practical application of LIBs. Herein, we first proposed an in situ reduction and template assembly strategy to attain a weave cage-like carbon nanostructure, composed of short carbon nanotubes and small graphene flakes, as a flexible nanotemplate that closely wrapped micron-sized mesoporous silicon (PSi) to form a robust composite construction. The in situ formed weave cage-like carbon nanostructure can remarkably improve the electrochemical property and structural stability of micron-sized PSi during deep galvanostatic cycling and high electric current density owing to multiple attractive advantages. As a result, the rechargeable LIB applying this anode material exhibits improved initial Coulombic efficiency (ICE), excellent rate performance, and cyclic stability in the existing micron-sized PSi/nanocarbon system. Moreover, this anode reached an approximation of 100% ICE after only three cycles and maintains this level in subsequent cycles. This design of flexible nanotemplated platform wrapped micron-sized PSi anode provides a steerable nanoengineering strategy toward conquering the challenge of long-term reliable LIB application.
Collapse
Affiliation(s)
- Chenhui Fang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jiaxing Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xiaofeng Zhang
- Institute of New Materials, Guangdong Academy of Science, Guangzhou 510650, P. R. China
| | - Wen Luo
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Guoqing Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xinxi Li
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zhongyun Liu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Pengfei Yin
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
- Key Laboratory of Materials Processing and Mold Ministry of Education, Zhengzhou University, Zhengzhou 450002, P. R. China
| |
Collapse
|